INORGANIC MATERIALS AND CERAMIC MATRIX COMPOSITES |
|
|
|
|
|
Research Progress of Li-rich Mn-based Cathode Materials |
TONG Hui1,2, XIE Jianlong1,3, ZHANG Zhimou1, GUO Xin3, YU Wanjing1,2,*, GUO Xueyi1,2, HUANG Chenghuan1,3,*
|
1 School of Metallurgy and Environment, Central South University, Changsha 410083, China 2 National & Regional Joint Engineering Research Center of Nonferrous Metal Resource Recycling, Changsha 410083, China 3 Hunan Changyuan Lico New Energy Co., Ltd., Changsha 410205, China |
|
|
Abstract Li-rich Mn-based materials (LRMOs) are highly favored due to their high energy density, cost-effectiveness, and eco-friendliness. However, LRMOs have inherent defects such as low initial Coulombic efficiency, poor cycling and rate performance, which limit their commercial application. In order to address these limitations, researchers have been working on enhancing the preparation techniques of LRMOs and proposing various modification strategies, which have significantly improved the performance of LRMOs. This summary introduces the composition, structure, charging and discharging mechanisms of LRMOs. It summarizes the latest research progress of LRMOs, including preparation methods, challenges faced, and common modification strategies. Moreover, it highlights the future research focus of LRMOs. This work provides valuable references for the research and development of LRMOs in the future.
|
Published: 10 February 2025
Online: 2025-02-05
|
|
|
|
1 Li X, Liu J, Banis M N, et al. Energy & Environmental Science, 2014, 7(2), 768. 2 Huang Z Y. Study on modification and properties of layered Li-rich Mn-based cathode material Li1. 2Mn0. 54Ni0. 13Co0. 13O2. Master's Thesis, Lanzhou University of Technology, China, 2022 (in Chinese). 黄照宇. 层状富锂锰基正极材料Li1. 2Mn0. 54Ni0. 13Co0. 13O2的改性及其性能研究. 硕士学位论文, 兰州理工大学, 2022. 3 Zhai X, Zhang P, Huang H, et al. Solid State Ionics, 2021, 366, 115661. 4 Nan W Z, Wang J X, Chen X, et al. Journal of Aeronautical Materials, 2021, 41(1), 1 (in Chinese). 南文争, 王继贤, 陈翔, 等. 航空材料学报, 2021, 41(1), 1. 5 Mauger A, Julien C M. Ionics, 2017, 23(8), 1933. 6 Huang B, Wang M, Xu G, et al. Ceramics International, 2021, 47(6), 7700. 7 He W, Liu P, Zhang Y, et al. Journal of Power Sources, 2021, 499, 229915. 8 Nie X K. Study on preparation and synergistic modification of lithium-rich manganese-based cathode materials. Ph. D. Thesis, Shandong University, China, 2021 (in Chinese). 聂祥坤. 富锂锰基正极材料的制备及协同改性研究. 博士学位论文, 山东大学, 2021. 9 Zeng W T. On the doping modification and electrochemical performance of Li-rich Mn-based Li1. 2Mn0. 54Ni0. 13Co0. 13O2. Master's Thesis, Guangxi University, China, 2022 (in Chinese). 曾维添. 富锂锰基Li1. 2Mn0. 54Ni0. 13Co0. 13O2的掺杂改性及电化学性能研究. 硕士学位论文, 广西大学, 2022. 10 Pimenta V, Sathiya M, Batuk D, et al. Chemistry of Materials, 2017, 29(23), 9923. 11 Cui S L, Wang Y Y, Liu S, et al. Electrochimica Acta, 2019, 328, 135109. 12 Qian Y, Duan J, Wu Q, et al. Journal of Materials Science-Materials in Electronics, 2022, 33(6), 3151. 13 Yu W H, Zhao L Y, Wang Y Y, et al. Journal of the Chinese Ceramic Society, 2022, 50(11), 3040 (in Chinese). 于文华, 赵刘洋, 王艳艳, 等. 硅酸盐学报, 2022, 50(11), 3040. 14 Xie J, Qian Y, Duan J, et al. Nano, 2021, 16(12), 2150137. 15 Genevois C, Koga H, Croguennec L, et al. Journal of Physical Chemistry C, 2015, 119(1), 75. 16 Jarvis K A, Deng Z, Allard L F, et al. Chemistry of Materials, 2011, 23(16), 3614. 17 Zheng H, Han X, Guo W, et al. Materials Today Energy, 2020, 18, 100518. 18 Yu H, Ishikawa R, So Y G, et al. Angewandte Chemie-International Edition, 2013, 52(23), 5969. 19 Lu Z H, Chen Z H, Dahn J R. Chemistry of Materials, 2003, 15(16), 3214. 20 He W, Guo W, Wu H, et al. Advanced Materials, 2021, 33(50), 2005937. 21 Feng Z J, Song H, Su W, et al. Chemical Engineering Journal, 2022, 450, 138114. 22 Liu Y, Yang Z, Zhong J, et al. ACS Nano, 2019, 13(10), 11891. 23 Son M Y, Hong Y J, Choi S H, et al. Electrochimica Acta, 2013, 103, 110. 24 Robertson A D, Bruce P G. Chemical Communications, 2002, 23, 2790. 25 Koyama Y, Tanaka I, Nagao M, et al. Journal of Power Sources, 2009, 189(1), 798. 26 Liu P F. Regulating anionic redox towards improvements on the electrochemical performance of Li-rich cathode materials. Ph. D. Thesis, Xiamen University, China, 2020 (in Chinese). 刘鹏飞. 晶格氧活性调控提升富锂正极材料的电化学性能研究. 博士学位论文, 厦门大学, 2020. 27 Wei Y, Zheng J, Cui S, et al. Journal of the American Chemical Society, 2015, 137(26), 8364. 28 Yao S G, Wei C, Cheng J, et al. Battery, 2018, 48(1), 13 (in Chinese). 姚寿广, 魏超, 程杰, 等. 电池, 2018, 48(1), 13. 29 Liu X Y. Preparation of the precursors for high-performance lithium-rich manganese-based cathode material and their performance study. Master's Thesis, Ningxia University, China, 2022 (in Chinese). 刘晓阳. 高性能富锂锰基正极材料前驱体的制备及其性能研究. 硕士学位论文, 宁夏大学, 2022. 30 Wang M, Han Y, Chu M, et al. Journal of Alloys and Compounds, 2021, 861, 158000. 31 Ma G, Li S, Zhang W X, et al. Angewandte Chemie-International Edition, 2016, 55(11), 3667. 32 Chen Q, Pei Y, Chen H W, et al. Nature Communications, 2020, 11(1), 3411. 33 Zhang Q. Synthesis of lithium-rich manganese-based gradient layered oxide materials by carbonate. Master's Thesis, Beijing University of Technology, China, 2018 (in Chinese). 张琦. 碳酸盐合成富锂锰基梯度层状氧化物研究. 硕士学位论文, 北京工业大学, 2018. 34 Cao W P, Yan J T, Zhang P, et al. Ionics, 2022, 28(10), 4515. 35 Abdel-Ghany A E, Hashem A M, Mauger A, et al. Journal of Solid State Electrochemistry, 2020, 24(11-12), 3157. 36 Si M, Wang D, Zhao R, et al. Advanced Science, 2020, 7(3), 1902538. 37 Liu X Y, Zhang D Y, Hu H C, et al. Journal of Alloys and Compounds, 2022, 904, 164024. 38 Cai Y X, Ku L, Wang L S, et al. Science China-Materials, 2019, 62(10), 1374. 39 Han J, Zheng H, Hu Z, et al. Electrochimica Acta, 2019, 299, 844. 40 Xiang Y H, Jiang Y L, Liu S Q, et al. Frontiers in Chemistry, 2020, 8, 729. 41 Xin Y, Lan X, Chang P, et al. Applied Surface Science, 2018, 447, 829. 42 Qiao Q Q, Zhang H Z, Li G R, et al. Journal of Materials Chemistry A, 2013, 1(17), 5262. 43 Liu J, Yang Z, Liu Q, et al. Ceramics International, 2023, 49(4), 6580. 44 Liao J, Zhang Z, Fan W, et al. Electrochimica Acta, 2022, 405, 139798. 45 Yan P, Nie A, Zheng J, et al. Nano Letters, 2015, 15(1), 514. 46 La Mantia F, Rosciano F, Tran N, et al. Journal of Applied Electroche-mistry, 2008, 38(7), 893. 47 Zou W, Xia F J, Song J P, et al. Electrochimica Acta, 2019, 318, 875. 48 Mohanty D, Li J, Abraham D P, et al. Chemistry of Materials, 2014, 26(21), 6272. 49 Liu T, Liu J, Li L, et al. Nature, 2022, 606(7913), 305. 50 Li X, Tang M, Feng X, et al. Chemistry of Materials, 2017, 29(19), 8282. 51 Gauthier M, Carney T J, Grimaud A, et al. Journal of Physical Chemistry Letters, 2015, 6(22), 4653. 52 Oh P, Oh S M, Li W D, et al. Advanced Science, 2016, 3(11), 1600184. 53 Leifer N, Penki T, Nanda R, et al. Physical Chemistry Chemical Physics, 2020, 22(16), 9098. 54 Sathiya M, Rousse G, Ramesha K, et al. Nature Materials, 2013, 12(9), 827. 55 Guo W B, Zhang Y G, Lin L, et al. Small, DOI:10. 1002/smll. 202300175. 56 Liu S, Liu Z, Shen X, et al. Advanced Energy Materials, 2018, 8(31), 1802105. 57 Li S, Yang L, Liu Z, et al. Energy Storage Materials, 2023, 55, 356. 58 Kim S B, Kim H, Park D H, et al. Journal of Power Sources, 2021, 506, 230219. 59 Wang M J, Yu F D, Sun G, et al. Journal of Materials Chemistry A, 2019, 7(14), 8302. 60 Zhang K, Qi J, Song J, et al. Advanced Materials, 2022, 34(11), 2109564. 61 Li L, Song B H, Chang Y L, et al. Journal of Power Sources, 2015, 283, 162. 62 Qing R P, Shi J L, Xiao D D, et al. Advanced Energy Materials, 2016, 6(6), 1501914. 63 Qiu B, Wang J, Xia Y, et al. Journal of Power Sources, 2013, 240, 530. 64 Ma Q, Chen Z, Zhong S, et al. Nano Energy, 2021, 81, 105622. 65 Zhang S, Tang T, Ma Z, et al. Journal of Power Sources, 2018, 380, 1. 66 Ding X, Li Y X, He X D, et al. ACS Applied Materials & Interfaces, 2019, 11(34), 31477. 67 He Z, Wang Z, Chen H, et al. Journal of Power Sources, 2015, 299, 334. 68 Guo H, Xia Y, Zhao H, et al. Ceramics International, 2017, 43(16), 13845. 69 Tang W, Duan J, Xie J, et al. ACS Applied Materials & Interfaces, 2021, 13(14), 16407. 70 Sun Z, Xu L, Dong C, et al. Journal of Materials Chemistry A, 2019, 7(7), 3375. 71 Zhang P, Zhai X, Huang H, et al. Ceramics International, 2020, 46(15), 24723. 72 Saroha R, Cho J S, Ahn J H. Electrochimica Acta, 2021, 366, 137471. 73 Feng X, Gao Y, Ben L, et al. Journal of Power Sources, 2016, 317, 74. 74 Su N, Lyu Y, Gu R, et al. Journal of Alloys and Compounds, 2018, 741, 398. 75 Zhang X, Yu R, Huang Y, et al. ACS Sustainable Chemistry & Engineering, 2018, 6(10), 12969. 76 Kong J Z, Zhai H F, Qian X, et al. Journal of Alloys and Compounds, 2017, 694, 848. 77 Shi S J, Tu J P, Tang Y Y, et al. Electrochimica Acta, 2013, 88, 671. 78 Zhang C, Feng Y, Wei B, et al. Nano Energy, 2020, 75, 104995. 79 Li C D, Yao Z L, Xu J, et al. Ionics, 2017, 23(3), 549. 80 Niu B, Li J, Liu Y, et al. Ceramics International, 2019, 45(9), 12484. 81 Xia Q, Zhao X, Xu M, et al. Journal of Materials Chemistry A, 2015, 3(7), 3995. 82 Yang J, Li P, Zhong F, et al. Advanced Energy Materials, 2020, 10(15), 1904264. 83 Wu C, Fang X, Guo X, et al. Journal of Power Sources, 2013, 231, 44. 84 Zhang J, Lu Q W, Fang J H, et al. ACS Applied Materials & Interfaces, 2014, 6(20), 17965. 85 Liu B, Zhang Q, He S, et al. Electrochimica Acta, 2011, 56(19), 6748. 86 Lai X, Hu G, Peng Z, et al. Journal of Power Sources, 2019, 431, 144. 87 Yang S Q, Wang P B, Wei H X, et al. Nano Energy, 2019, 63, 103889. 88 Chen C, Geng T F, Du C Y, et al. Journal of Power Sources, 2016, 331, 91. 89 Zhang J, Zhang H, Gao R, et al. Physical Chemistry Chemical Physics, 2016, 18(19), 13322. 90 Li M, Wang H Y, Zhao L M, et al. Journal of Solid State Chemistry, 2019, 272, 38. 91 Mu K, Tao Y, Peng Z, et al. Applied Surface Science, 2019, 495, 143503. 92 Duan J, Tang W, Wang R, et al. Applied Surface Science, 2020, 521, 146504. 93 Kim S Y, Park C S, Hosseini S, et al. Advanced Energy Materials, 2021, 11(30), 2100552. 94 Li M. Study of two layers coating, co-doping, coating and la-doping combined errect in lithium-rich layered oxide material. Master's Thesis, Shanghai Jiao Tong University, China, 2019 (in Chinese). 李敏. 富锂层状氧化物材料中双包覆、双掺杂、掺杂包覆联合改性的研究. 硕士学位论文, 上海交通大学, 2019. 95 Liu W, Oh P, Liu X, et al. Advanced Energy Materials, 2015, 5(13), 1500274. 96 Mei J, Chen Y, Xu W, et al. Chemical Engineering Journal, 2022, 431, 133799. 97 Langdon J, Manthiram A. Energy Storage Materials, 2021, 37, 143. 98 Su Y, Wang M, Zhang M, et al. Journal of Alloys and Compounds, 2022, 905, 164204. 99 Sun J, Sheng C, Cao X, et al. Advanced Functional Materials, 2022, 32(10), 2110295. 100 Yabuuchi N, Kubota K, Aoki Y, et al. Journal of Physical Chemistry C, 2016, 120(2), 875. 101 Jiao C, Wang M, Huang B, et al. Journal of Alloys and Compounds, 2023, 937, 168389. 102 Luo Q, Xie Y X, Wu Z J, et al. ACS Applied Energy Materials, 2021, 4(5), 4867. 103 Zhang X, Cao S, Yu R, et al. ACS Applied Energy Materials, 2019, 2(2), 1563. 104 Zheng Y, Chen L, Su Y, et al. Journal of Materials Chemistry A, 2017, 5(46), 24292. 105 Guo W, Zhang C, Zhang Y, et al. Advanced Materials, 2021, 33(38), 2103173. 106 Guo H, Wei Z, Jia K, et al. Energy Storage Materials, 2019, 16, 220. 107 Huang X, Zhang D, Xu S, et al. Chemical communications (Cambridge, England), 2023, 59(36), 5379. 108 Luo D, Ding X, Fan J, et al. Angewandte Chemie-International Edition, 2020, 59(51), 23061. 109 Qiu B, Zhang M, Wu L, et al. Nature Communications, 2016, 7, 12108. 110 Chen J, Zou G Q, Deng W T, et al. Advanced Functional Materials, 2020, 30(46), 2004302. 111 Luo D, Shi P, Fang S, et al. Journal of Power Sources, 2017, 364, 121. 112 Li Y, Bai Y, Wu C, et al. Journal of Materials Chemistry A, 2016, 4(16), 5942. 113 Fu F, Yao Y, Wang H, et al. Nano Energy, 2017, 35, 370. 114 Zhu Z, Yu D W, Yang Y, et al. Nature Energy, 2019, 4(12), 1049. 115 Yang X, Wang X, Zou G, et al. Journal of Power Sources, 2013, 232, 338. 116 Cao S, Wu C, Xie X, et al. ACS Applied Materials & Interfaces, 2021, 13(15), 17639. 117 Huang J J. Research on preparation and modification of O2-type lithium-rich manganese-based cathode material. Master's Thesis, Tianjin University of Technology, China, 2022 (in Chinese). 黄俊杰. O2型富锂锰基正极材料的制备与改性研究. 硕士学位论文, 天津理工大学, 2022. 118 Luo D, Zhu H, Xia Y, et al. Nature Energy, 2023, 8(10), 1078. 119 Zhang S, Gu H, Pan H, et al. Advanced Energy Materials, 2017, 7(6), 1601066. 120 Zhang G, Qiu B, Xia Y, et al. Journal of Power Sources, 2019, 420, 29. 121 Xiao Z, Liu J, Fan G, et al. Materials Chemistry Frontiers, 2020, 4(6), 1689. 122 Zhang X, Zhao J, Lee G H, et al. Advanced Energy Materials, DOI:10. 1002/aenm. 202202929. |
|
|
|