INORGANIC MATERIALS AND CERAMIC MATRIX COMPOSITES |
|
|
|
|
|
NMR Analysis of Capillary Water Absorption Characteristics and Mechanical Properties of Concrete After High-temperature |
TIAN Wei1,*, GUO Jian1, WANG Wenkui1, ZHANG Jingsheng1,2, WANG Kaixing1
|
1 School of Architecture and Engineering, Chang'an University, Xi'an 710061, China 2 CCCC Fourth Highway Engineering Bureau Co., Ltd., Beijing 100022, China |
|
|
Abstract To investigate the influence of high temperature on the mechanical properties and capillary water absorption characteristics of concrete, uniaxial compression tests and capillary water absorption tests were conducted on concrete specimens after exposure to high temperatures of 200, 400, 600, and 800 ℃. The pore structure and capillary water absorption process were studied using Nuclear Magnetic Resonance (NMR) technology. Experimental results indicate that the mass loss rate of concrete gradually increases with exposure to temperatures of 200, 400, 600, and 800 ℃, while the compressive strength increases first and then decreases. Based on the distribution characteristics of the NMR T2 spectrum, concrete pores were classified into micropores, mesopores, capillary pores, and macropores. Analysis of the water absorption characteristics of concrete after exposure to high temperatures reveals that the water absorption height of concrete is generally exponentially related to the NMR signal intensity. When the NMR signal intensity rapidly increases, moisture enters the interior of the concrete specimen under capillary force. As the NMR signal continues to rise gradually over time but at a decreasing rate, the specimen maintains its water absorption state but with a gradually decreasing water absorption rate per unit time. When the NMR signal decreases and the rate of decrease slows down, the pores gradually are filled with moisture, and the concrete specimen tends to be saturation.
|
Published: 10 February 2025
Online: 2025-02-05
|
|
|
|
1 Sun Peng, Hou Xiaomeng. Journal of Chang'an University(Natural Science Edition), 2018, 38(6), 20 (in Chinese). 孙鹏, 侯晓萌. 长安大学学报(自然科学版), 2018, 38(6), 20. 2 Bian Rui, Zhang Yan, Jiang Linhua, et al. Concrete, 2017(11), 10 (in Chinese). 卞瑞, 张研, 蒋林华, 等. 混凝土, 2017(11), 10. 3 Jia Bin. Static and dynamic mechanical behavior of concrete at elevated temperature. Master's Thesis, Chongqing University, China, 2011 (in Chinese). 贾彬. 混凝土高温静动力学特性研究. 硕士学位论文, 重庆大学, 2011. 4 Zhang Haiyan, Qi Zhuliang, Cao Liang. Journal of Disaster Prevention and Mitigation Engineering, 2015, 35(1), 11 (in Chinese). 张海燕, 祁术亮, 曹亮. 防灾减灾工程学报, 2015, 35(1), 11. 5 Jiang Fuxiang, Yu Kuifeng, Zhao Tiejun, et al. Sichuan Building Science, 2010, 36(2), 34 (in Chinese). 姜福香, 于奎峰, 赵铁军, 等. 四川建筑科学研究, 2010, 36(2), 32. 6 Xiao Z J, Zhang Z C . Key Engineering Materials, 2007, 76(348-349), 937. 7 Rong Huren, Gu Jingyu, Cao Haiyun, et al. Bulletin of the Chinese Ceramic Society, 2019, 38(5), 1573 (in Chinese). 戎虎仁, 顾静宇, 曹海云, 等. 硅酸盐通报, 2019, 38(5), 1573. 8 Jeyaprabha B, Elangovan G, Prakash P. Construction and Building Materials, 2016, 114, 688. 9 Jin Zuquan, Sun Wei, Hou Baorong, et al. Journal of Southeast University (Natural Science Edition), 2010, 40(3), 619 (in Chinese). 金祖权, 孙伟, 侯保荣, 等. 东南大学学报(自然科学版), 2010, 40(3), 619. 10 Chen Xiaoting, Zhao Renda. China Concrete and Cement Products, 2007(2), 11 (in Chinese). 陈晓婷, 赵人达. 混凝土与水泥制品, 2007(2), 11. 11 Song Baofeng, Li Heyu, Zhang Shufen, et al. Bulletin of the Chinese Ceramic Society, 2020, 39(11), 3522 (in Chinese). 宋宝峰, 李和玉, 张淑芬, 等. 硅酸盐通报, 2020, 39(11), 3522. 12 Yao Weijing, Pang Jianyong. Acta Materiae Compositae Sinica, 2019, 36(12), 2932 (in Chinese). 姚韦靖, 庞建勇. 复合材料学报, 2019, 36(12), 2932. 13 Su Xuefeng, Zhang Yahui. Bulletin of the Chinese Ceramic Society, 2019, 38(12), 3916 (in Chinese). 苏雪峰, 张亚慧. 硅酸盐通报, 2019, 38(12), 3916. 14 Gao F, Tian W, Cheng X. Construction and Building Materials, 2021, 288, 123146. 15 Zhang Xuesong, Wu Xianghao, Li Zhiwei, et al. Building Science, 2019, 35(7), 72 (in Chinese). 张雪松, 吴相豪, 李志卫, 等. 建筑科学, 2019, 35(7), 72. 16 Yuan Bin, Fan Hongfei, Xu Bihua, et al. Materials Reports, 2023, 37(S1), 201 (in Chinese). 袁彬, 范鸿飞, 徐璧华, 等. 材料导报, 2023, 37(S1), 201. 17 Zhang Jingli, Jiu Yongzhi. Composites Science and Engineering, 2022(8), 58 (in Chinese). 张景丽, 纠永志. 复合材料科学与工程, 2022(8), 58. 18 Yang Shuhui, Gao Danying, Zhao Jun. Journal of Southeast University(Natural Science Edition) 2010, 40(S2), 102 (in Chinese). 杨淑慧, 高丹盈, 赵军. 东南大学学报(自然科学版), 2010, 40(S2), 102. 19 Zhang H, Li L, Yuan C, et al. Construction and Building Materials, 2020, 255, 262. 20 Guo Qiusheng. Industrial Construction, 2020, 50(3), 119 (in Chinese). 郭秋生. 工业建筑, 2020, 50(3), 119. 21 Guan Xiao, Zhang Pengxin, Qiu Jisheng, et al. Journal of Building Materials, 2023, 26(5), 483 (in Chinese). 关虓, 张鹏鑫, 邱继生, 等. 建筑材料学报, 2023, 26(5), 483. 22 Yin Shi, Li Beixing, Chen Pengbo, et al. Bulletin of the Chinese Ceramic Society, 2023, 42(4), 1205 (in Chinese). 殷实, 李北星, 陈鹏博, 等. 硅酸盐通报, 2023, 42(4), 1205. 23 Gao Shizhuang, Xue Shanbin, Zhang Peng, et al. Acta Materiae Compo-sitae Sinica, 2022, 39(10), 4778 (in Chinese). 高世壮, 薛善彬, 张鹏, 等. 复合材料学报, 2022, 39(10), 4778. 24 Wang Licheng, Bao Jiuwen. Journal of Building Materials, 2014, 17(6), 972 (in Chinese). 王立成, 鲍玖文. 建筑材料学报, 2014, 17(6), 972. 25 Jiang Jianhua, Wu Qi, Fu Yongquan, et al. Journal of Building Mate-rials, 2022, 25(3), 248 (in Chinese). 蒋建华, 吴琦, 付用全, 等. 建筑材料学报, 2022, 25(3), 248. 26 Wang Xiaojing, Wang Xinxin, Zhang Wei. Journal of Tianjin University(Science and Technology), 2021, 54(3), 324 (in Chinese). 王晓静, 王鑫鑫, 张伟. 天津大学学报(自然科学与工程技术版), 2021, 54(3), 324. 27 Qu Mingliang, Tian Shuaiqi, Lin Qingyang, et al. Building Energy Efficiency, 2022, 50(9), 9 (in Chinese). 瞿铭良, 田帅奇, 林青阳, 等. 建筑节能(中英文), 2022, 50(9), 9. 28 Deng Xianghui, Gao Xiaoyue, Wang Rui, et al. Materials Reports, 2021, 35(16), 16028 (in Chinese). 邓祥辉, 高晓悦, 王睿, 等. 材料导报, 2021, 35(16), 16028. 29 Duan Pinjia, Yang Haitao, Liu Juanhong, et al. Materials Reports, 2021, 35(11), 11092 (in Chinese). 段品佳, 杨海涛, 刘娟红, 等. 材料导报, 2021, 35(11), 11092. 30 Luzar J, Padovnik A, tukovnik P, et al. Construction and Building Materials, 2020, 250, 118937. 31 Lei S, Francesco M L, Giovanni L D, et al. Cement and Concrete Research, 2021, 1, 146. 32 Han Feng. Study on mechanical properties and water infiltration properties of self-compacting concrete with hybrid fiber after high temperature. Master's Thesis, Northeast Electric Power University, China, 2022 (in Chinese). 韩丰. 高温后混杂纤维自密实混凝土力学性能和水渗性能研究. 硕士学位论文. 东北电力大学, 2022. 33 Yan Ruizhen. Influence of high temperature on physical and mechanical properties of C40 high performance concrete. Ph. D. Thesis. Taiyuan University of Technology, China, 2015 (in Chinese). 阎蕊珍. 高温对C40高性能混凝土物理力学性能的影响. 博士学位论文. 太原理工大学, 2015. 34 Zhai Cheng, Sun Yong, Fan Yiren, et al. Journal of China Coal Society, 2022, 47(2), 828 (in Chinese). 翟成, 孙勇, 范宜仁, 等. 煤炭学报, 2022, 47(2), 828. 35 She A, Yao W, Yuan W. Journal of Central South University, 2013, 20(4), 1109. 36 Liu L, He Z, Cai X, et al. Applied Magnetic Resonance, 2021, 52, 15. 37 Mehta P K, Monteiro P J M. Concrete:microstructure, properties, and materials, McGraw-Hill Education, USA, 2014. 38 Yan Jianping, Wen Danni, Li Zunzhi, et al. Chinese Journal of Geophysics, 2016, 59(3), 313. |
|
|
|