INORGANIC MATERIALS AND CERAMIC MATRIX COMPOSITES |
|
|
|
|
|
Recent Research Advances in Efficient Solar-driven Desalination |
LI Xue1, ZHOU Mingyu2, HAN Peng1, QI Guicun1, GAO Dali1, TAO Shengyang2, WANG Yuchao2,*
|
1 Beijing Research Institute of Chemical Industry, China Petroleum & Chemical Corporation, Beijing 100013, China 2 School of Chemistry, Dalian University of Technology, Dalian 116024, Liaoning, China |
|
|
Abstract Owing to uneven distribution of freshwater resources in time and space, water scarcity significantly constrains the development of several countries and regions globally. In coastal areas, desalination is an essential approach to compensating freshwater scarcity. Inspired by the natural water cycle, solar-driven water evaporation is considered a sustainable and low-cost desalination technology because of its ability to directly separate freshwater from seawater under solar irradiation. Despite the lower energy utilization and evaporation efficiency of conventional evaporation, researchers employ photothermal materials for centralized heating of the air-water interface to improve solar energy utilization based on the interfacial evaporation theory. In this review, the critical factors for efficient solar-driven interfacial evaporation are introduced based on state-of-the-art studies. We systematically summarize general photothermal materials identified in previous references, as well as the advanced structural design of photothermal evaporators for outstanding system energy management and mass-transfer regulation. The mass-energy-transfer process of evaporation systems is further analyzed to illustrate its impact on performance. In addition, the issues encountered during long-term solar desalination, e.g., salt precipitation, and corresponding solution strategies are compared and discussed.Finally, we explore the challenges facing solar-driven interfacial evaporation and the prospects for its development in desalination applications.
|
Published: 10 July 2024
Online: 2024-08-01
|
|
Fund:Natural Science Foundation Program of Liaoning Province(2022-MS-143) and the Dalian Science and Technology Innovation Fund(2022JJ13SN098). |
|
|
1 Nagar A, Pradeep T. ACS Nano, 2020, 14(6), 6420. 2 Ahmed F E, Hashaikeh R, Hilal N. Desalination, 2019, 453, 54. 3 Wang W, Shi Y, Zhang C, et al. Nano Letters, 2021, 21(12), 5068. 4 Al-Amshawee S, Yunus M Y B M, Azoddein A A M, et al. Chemical Engineering Journal, 2020, 380, 122231. 5 Ghazi Z M, Rizvi S W F, Shahid W M, et al. Desalination, 2022, 542, 116063. 6 Chen C, Kuang Y, Hu L. Joule, 2019, 3(3), 683. 7 Liu H, Huang Z, Liu K, et al. Advanced Energy Materials, 2019, 9(21), 1900310. 8 Wu X, Chen G Y, Owens G, et al. Materials Today Energy, 2019, 12, 277. 9 Zhao F, Guo Y, Zhou X, et al. Nature Reviews Materials, 2020, 5(5), 388. 10 Gao M, Zhu L, Peh C K, et al. Energy & Environmental Science, 2019, 12(3), 841. 11 Tao P, Ni G, Song C, et al. Nature Energy, 2018, 3(12), 1031. 12 Zhang L, Xu Z, Zhao L, et al. Energy & Environmental Science, 2021, 14(4), 1771. 13 Zhou X, Zhao F, Zhang P, et al. ACS Materials Letters, 2021, 3(8), 1112. 14 Zhang Y, Xiong T, Nandakumar D K, et al. Advanced Science, 2020, 7(9), 1903478. 15 Wei Z, Wang J, Guo S, et al. Nano Research Energy, 2022, 1(2), 9120014. 16 Zhao F, Zhou X, Shi Y, et al. Natuere Nanotechnology, 2018, 13(6), 489. 17 Sharshir S W, Algazzar A M, Elmaadawy K A, et al. Desalination, 2020, 491, 114564. 18 Seh Z W, Liu S, Low M, et al. Advanced Materials, 2012, 24(17), 2310. 19 Hessel C M, Pattani V P, Rasch M, et al. Nano Letters, 2011, 11(6), 2560. 20 Ghasemi H, Ni G, Marconnet A M, et al. Nature Communiactions, 2014, 5, 4449. 21 Zhou L, Tan Y, Ji D, et al. Science Advances, 2016, 2(4), 1501227. 22 Ji M, Liu H, Cheng M, et al. The Journal of Physical Chemistry C, 2022, 126(5), 2454. 23 Ye M, Jia J, Wu Z, et al. Advanced Energy Materials, 2017, 7(4), 1601811. 24 Chen X, Meng C, Wang Y, et al. ACS Sustainable Chemistry & Engineering, 2020, 8(2), 1095. 25 Zhang Q, Xiao X, Zhao G, et al. Journal of Materials Chemistry A, 2021, 9(17), 10945. 26 Yin Z, Wang H, Jian M, et al. ACS Applied Materials & Interfaces, 2017, 9(34), 28596. 27 Geng X, Zhang D, Zheng Z, et al. Nano Energy, 2021, 82, 105700. 28 Mascaretti L, Schirato A, Zboil R, et al. Nano Energy, 2021, 83, 105828. 29 Wang Z, Yu K, Gong S, et al. ACS Applied Materials & Interfaces, 2021, 13(14), 16246. 30 Tian L, Luan J, Liu K K, et al. Nano Letters, 2016, 16(1), 609. 31 Chen J, Feng J, Li Z, et al. Nano Letters, 2019, 19(1), 400. 32 Fan P, Wu H, Zhong M, et al. Nanoscale, 2016, 8(30), 14617. 33 Zhou L, Tan Y, Wang J, et al. Nature Photonics, 2016, 10(6), 393. 34 Liu Z, Song H, Ji D, et al. Global Challenges, 2017, 1(2), 1600003. 35 Zhu H W, Ge J, Zhao H Y, et al. Science China Materials, 2020, 63(10), 1957. 36 Hu Y, Ma H, Wu M, et al. Nature Communiactions, 2022, 13(1), 4335. 37 Shi Y, Li R, Shi L, et al. Advanced Sustainable Systems, 2018, 2(3), 1700145. 38 Xu D, Li Z, Li L, et al. Advanced Functional Materials, 2020, 30(47), 2000712. 39 Sun X, Jia X, Yang J, et al. Solar RRL, 2022, 6(2), 2100888. 40 Lei Z, Sun X, Zhu S, et al. Nano-micro Letters, 2021, 14(1), 10. 41 Zhou B, Song J, Wang B, et al. Nano Research, 2022, 15(10), 9520. 42 Xu Y, Li C, Wu X, et al. Journal of the American Chemical Society, 2022, 144(41), 18834. 43 Guan W, Guo Y, Yu G. Small, 2021, 17(48), 2007176. 44 Cao S, Jiang Q, Wu X, et al. Journal of Materials Chemistry A, 2019, 7(42), 24092. 45 Bu Y, Zhou Y, Lei W, et al. Journal of Materials Chemistry A, 2022, 10(6), 2856. 46 Hu Y, Yao H, Liao Q, et al. EcoMat, 2022, 4(5), 12205. 47 Li W, Li X, Liu J, et al. ACS Applied Materials & Interfaces, 2021, 13(19), 22845. 48 Cheng Y, Cheng S, Chen B, et al. Journal of the American Chemical Society, 2022, 144(34), 15562. 49 Liu H, Huang G, Wang R, et al. ACS Applied Materials & Interfaces, 2022, 14(28), 32404. 50 Ibrahim I, Bhoopal V, Seo D H, et al. Materials Today Energy, 2021, 21, 100716. 51 Xue G, Liu K, Chen Q, et al. ACS Applied Materials & Interfaces, 2017, 9(17), 15052. 52 Zhu M, Yu J, Ma C, et al. Solar Energy Materials and Solar Cells, 2019, 191, 83. 53 Xu N, Hu X, Xu W, et al. Advanced Materials, 2017, 29(28), 1606762. 54 Chen T, Xie H, Qiao X, et al. ACS Applied Materials & Interfaces, 2020, 12(45), 50397. 55 Zafar M S, Zahid M, Athanassiou A, et al. Advanced Sustainable Systems, 2021, 5(8), 2100031. 56 Sun P, Zhang W, Zada I, et al. ACS Applied Materials & Interfaces, 2020, 12(2), 2171. 57 Fang J, Liu J, Gu J, et al. Chemistry of Materials, 2018, 30(18), 6217. 58 Long Y, Huang S, Yi H, et al. Journal of Materials Chemistry A, 2019, 7(47), 26911. 59 Zhang H, Li L, Jiang B, et al. ACS Applied Materials & Interfaces, 2020, 12(14), 16503. 60 Choi J, Lee H, Sohn B, et al. Scientific Reports, 2021, 11(1), 16811. 61 Zhao X, Zha X J, Tang L S, et al. Nano Research, 2020, 13(1), 255. 62 Li R, Wang Z, Tao X, et al. Polymer Chemistry, 2021, 12(22), 3233. 63 Xiao L, Chen X, Yang X, et al. ACS Applied Polymer Materials, 2020, 2(10), 4273. 64 Zou Y, Chen X, Yang P, et al. Science Advances, 2020, 6(36), eabb4696. 65 Wang Y, Zhu W, Du W, et al. Angewandte Chemie International Edition, 2018, 57(15), 3963. 66 Lu B, Chen Y, Li P, et al. Nature Communiactions, 2019, 10(1), 767. 67 Wang C, Wang Y, Song X, et al. Advanced Sustainable Systems, 2019, 3(1), 1800108. 68 Li W, Li Z, Bertelsmann K, et al. Advanced Materials, 2019, 31(29), e1900720. 69 Zhou X, Guo Y, Zhao F, et al. Accounts of Chemical Research, 2019, 52(11), 3244. 70 Zhou X, Zhao F, Guo Y, et al. Science Advances, 2019, 5(6), eaaw5484. 71 Zhou X, Guo Y, Zhao F, et al. Advanced Materials, 2020, 32(52), e2007012. 72 Zhang Y S, Khademhosseini A. Science, 2017, 356(6337), aaf3627. 73 Li C, Zhu B, Liu Z, et al. Chemical Engineering Journal, 2022, 431(3), 134244. 74 Zhao L, Yang Z, Wang J, et al. Chemical Engineering Journal, 2023, 451(3), 138676. 75 Qiu Y, Zhou Z, Zhang C, et al. ACS Energy Letters, 2022, 7(10), 3476. 76 Zhang C, Liang H Q, Xu Z K, et al. Advanced Science, 2019, 6(18), 1900883. 77 Luo Y, Fu B, Shen Q, et al. ACS Applied Materials & Interfaces, 2019, 11(7), 7584. 78 Ni G, Li G, Boriskina S V, et al. Nature Energy, 2016, 1(9), 16126. 79 Gao X, Ren H, Zhou J, et al. Chemistry of Materials, 2017, 29(14), 5777. 80 Chen Z, Li Q, Chen X. ACS Sustainable Chemistry & Engineering, 2020, 8(36), 13850. 81 Wang Y, Wang C, Song X, et al. Journal of Materials Chemistry A, 2018, 6(3), 963. 82 Chaule S, Hwang J, Ha S J, et al. Advanced Materials, 2021, 33(38), e2102649. 83 He M, Dai H, Liu H, et al. ACS Applied Materials & Interfaces, 2021, 13(34), 40664. 84 Wang Y, Wang C, Song X, et al. Journal of Materials Chemistry A, 2018, 6(21), 9874. 85 Huang W, Hu G, Tian C, et al. Sustainable Energy & Fuels, 2019, 3(11), 3000. 86 Dong Y, Tan Y, Wang K, et al. Water Research, 2022, 223, 119011. 87 Shi Y, Li R, Jin Y, et al. Joule, 2018, 2(6), 1171. 88 Liu X, Mishra D D, Wang X, et al. Journal of Materials Chemistry A, 2020, 8(35), 17907. 89 Zhou L, Li X, Ni G W, et al. National Science Review, 2019, 6(3), 562. 90 Ito Y, Tanabe Y, Han J, et al. Advanced Materials, 2015, 27(29), 4302. 91 Li C, Jiang D, Huo B, et al. Nano Energy, 2019, 60, 841. 92 Li X, Xu W, Tang M, et al. Proceeding of the National Academy of Sciences of the United States of America, 2016, 113(49), 13953. 93 Soo J B, Soo K I, Ki H I, et al. Applied Surface Science, 2022, 583, 152563. 94 Liu Z, Yang Z, Huang X, et al. Journal of Materials Chemistry A, 2017, 5(37), 20044. 95 Li Y, Gao T, Yang Z, et al. Advanced Materials, 2017, 29(26), 1700981. 96 Dong X, Li H, Gao L, et al. Small, 2022, 18(13), e2107156. 97 Liu Z, Wu B, Zhu B, et al. Advanced Functional Materials, 2019, 29(43), 1905485. 98 Zhang P, Liao Q, Yao H, et al. Journal of Materials Chemistry A, 2018, 6(31), 15303. 99 Hong S, Shi Y, Li R, et al. ACS Applied Materials & Interfaces, 2018, 10(34), 28517. 100 Li X, Lin R, Ni G, et al. National Science Review, 2018, 5(1), 70. 101 Wu X, Wu Z, Wang Y, et al. Advanced Science, 2021, 8(7), 2002501. 102 Meng F, Ju B, Zhang S, et al. Journal of Materials Chemistry A, 2021, 9(24), 13746. 103 Anukunwithaya P, Koh J J, Chuan Yeo J C, et al. Journal of Materials Chemistry A, 2022, 10(29), 15743. 104 Finnerty C T K, Menon A K, Conway K M, et al. Environmental Science & Technology, 2021, 55(22), 15435. 105 Zhang C, Yuan B, Liang Y, et al. Solar Energy Materials and Solar Cells, 2021, 227, 111127. 106 Li X, Li J, Lu J, et al. Joule, 2018, 2(7), 1331. 107 Li J, Wang X, Lin Z, et al. Joule, 2020, 4(4), 928. 108 Wang Y, Wu X, Gao T, et al. Nano Energy, 2021, 79, 105477. 109 Pan Y, Li E, Wang Y, et al. Environmental Science & Technology, 2022, 56(16), 11818. 110 Shang M, Li N, Zhang S, et al. ACS Applied Energy Materials, 2017, 1(1), 56. 111 Lim H W, Lee S J. Desalination, 2022, 526, 115540. 112 Sun Y, Zhao Z, Zhao G, et al. Carbon, 2021, 179, 337. 113 Liu N, Hao L, Zhang B, et al. Energy & Environmental Materials, 2021, 5(2), 617. 114 Chen K, Li L, Zhang J. ACS Applied Materials & Interfaces, 2021, 13(49), 59518. 115 Gong F, Wang W, Li H, et al. Applied Energy, 2020, 261, 114410. 116 Li Y, Gao T, Yang Z, et al. Nano Energy, 2017, 41, 201. 117 Toksoz D, Yilmaz I. Geotechnical and Geological Engineering, 2019, 38(1), 813. 118 Xiong Z C, Zhu Y J, Qin D D, et al. ACS Applied Materials & Interfaces, 2020, 12(29), 32556. 119 Xu W, Hu X, Zhuang S, et al. Advanced Energy Materials, 2018, 8(14), 1702884. 120 Chen X, He S, Falinski M M, et al. Energy & Environmental Science, 2021, 14(10), 5347. 121 Li H N, Yang H C, Zhu C Y, et al. Journal of Materials Chemistry A, 2022, 10(39), 20856. 122 Xia Y, Kang Y, Wang Z, et al. Journal of Materials Chemistry A, 2021, 9(11), 6612. 123 Cao N, Lu S, Yao R, et al. Chemical Engineering Journal, 2020, 397, 125522. 124 Peng H, Wang D, Fu S. ACS Applied Materials & Interfaces, 2021, 13(40), 47549. 125 Li L, He N, Jiang B, et al. Advanced Functional Materials, 2021, 31(43), 2104380. 126 Zhang C, Shi Y, Shi L, et al. Nature Communiactions, 2021, 12(1), 998. 127 Wu L, Dong Z, Cai Z, et al. Nature Communiactions, 2020, 11(1), 521. 128 Wang Y, Wu X, Wu P, et al. Journal of Materials Chemistry A, 2022, 10(27), 14470. 129 Bian Y, Tang K, Tian L, et al. ACS Applied Materials & Interfaces, 2021, 13(4), 4935. 130 Sheng M, Yang Y, Bin X, et al. Nano Energy, 2021, 89, 106468. 131 Cooper T A, Zandavi S H, Ni G W, et al. Nature Communiactions, 2018, 9(1), 5086. 132 Menon A K, Haechler I, Kaur S, et al. Nature Sustainability, 2020, 3(2), 144. 133 Chen C, Wang M, Chen X, et al. Chemical Engineering Journal, 2022, 448, 137603. 134 Xu Y, Liu D, Xiang H, et al. Journal of Membrane Science, 2019, 586, 222. 135 Zhang D, Zhang M, Chen S, et al. Desalination, 2021, 500, 114899. 136 Kuang Y, Chen C, He S, et al. Advanced Materials, 2019, 31(23), e1900498. 137 Yuan P, Men C, Zhao L, et al. ACS Applied Materials & Interfaces, 2022, 14(13), 15549. 138 Chu A, Yang M, Yang H, et al. ACS Applied Materials & Interfaces, 2022, 14(31), 36116. 139 Liu X, Chen F, Li Y, et al. Advanced Materials, 2022, 34(36), e2203137. 140 Zhou X, Zhao F, Guo Y, et al. Energy & Environmental Science, 2018, 11(8), 1985. 141 Geddert T, Augustin W, Scholl S. Heat Transfer Engineering, 2011, 32(3-4), 300. 142 Morelos-Gomez A, Cruz-Silva R, Muramatsu H, et al. Nature Nanotechnology, 2017, 12(11), 1083. 143 Xu Z, Li Z, Jiang Y, et al. Journal of Materials Chemistry A, 2020, 8(48), 25571. 144 Dao V D, Vu N H, Yun S. Nano Energy, 2020, 68, 104324. 145 Moore G W K, Howell S E L, Brady M, et al. Nature Communiactions, 2021, 12(1), 1. |
[1] |
WANG Zhengxing, REN Yongsheng, MA Wenhui, LYU Guoqiang, ZENG Yi, ZHAN Shu, CHEN Hui, WANG Zhe. Principle, Process and Prospect of Monocrystalline Silicon Growth with Czochralski Method[J]. Materials Reports, 2024, 38(9): 22100160-13. |
|
|
|
|