INORGANIC MATERIALS AND CERAMIC MATRIX COMPOSITES |
|
|
|
|
|
Electrolytic Invalidation Behavior of Ti Based Ru-Ir-Ti Electrode in Dilute Sodium Chloride Solution |
YANG Ruifeng1,2, JIA Bo1,2,*, GUO Min1,2, WU Chenhang1,2, LI Jinyue1,2, HAO Xiaojun1,2, FENG Qing1,2
|
1 Xi'an Taijin Industrial Electrochemical Technology Co., Ltd., Xi'an 710021, China 2 Northwest Institute for Nonferrous Metal Research, Xi'an 710016, China |
|
|
Abstract Titanium electrode has been regarded as a promising material with wide applications in chlor alkali industry, drinking water disinfection, circulating cooling water treatment owing to its unique properties, such as high catalytic activity, high durability, easy processing, etc. However, the invalidation mechanism is mostly carried out in sulfuric acid solution, which can not really reflect the actual situation of the electrode working in sodium chloride environment. In view of this, electrochemical and surface physical methods were used to study the accelerated electrolysis process of Ru-Ir-Ti electrode in dilute sodium chloride solution. The results of different stages of accelerated electrolysis show that the invalidation of the electrode is a gradual process, and the dissolution rate of ruthenium on the surface of the coating is faster in the early stage of electrolysis, and then the electrode is uniformly corroded, and the active materials Ru and Ir are gradually reduced. The electrolytic consumption of the coating on the surface and inside leads to loose coating and structural damage, when the active substance decreases to the critical point, the electrocatalytic active substance with conductivity is missing, the reaction proceeds slowly, and the cell voltage rises, which is the main reason for electrode invalidation, and the passivation phenomenon of the electrode substrate has not been found in the research process. At the same time, studies have shown that sodium hypochlorite produced by electrolysis will not affect the performance of the electrode.
|
Published: 10 July 2024
Online: 2024-08-01
|
|
Fund:Key Research and Development Plan of Shaanxi Province (2017ZDXM-GY-041). |
|
|
1 Xing Y, Zhang X K, Zhou K G, et al. Chemical Industry and Enginee-ring Progress, 2021, 40(5), 2909 (in Chinese). 幸艳, 张雪凯, 周康根, 等. 化工进展, 2021, 40(5), 2909. 2 He Z C, Xia Z X, Hu J X, et al. Chinese Journal of Energetic Materials, 2020, 28(1), 52 (in Chinese). 何志成, 夏智勋, 胡建新, 等. 含能材料, 2020, 28(1), 52. 3 Qiu C, Chang M. Journal of Tianjin University of Technology, 2010, 26(2), 36. 4 Kadakia K, Datta M, Velikokhatnyi O, et al. International Journal of Hydrogen Energy, 2012, 37, 3001. 5 Siracusano S, Hodnik N, Jovanovic P, et al. Nano Energy, 2017, 40, 618. 6 Liu Y P, Liang X, Chen H, et al. Chinese Journal of Catalysis, 2021, 42(7), 1054 (in Chinese). 刘一蒲, 梁宵, 陈辉, 等. 催化学报, 2021, 42(7), 1054. 7 Rozain C, Mayousse E, Guillet N, et al. Applied Catalysis B:Environmental, 2016, 182, 123. 8 Yu H, Danilovic N, Wang Y, et al. Applied Catalysis B:Environmental, 2018, 239, 133. 9 Bernt M, Siebel A, Gasteiger H. Journal of the Electrochemical Society, 2018, 165, F305. 10 Bernt M, Hartig-Weiß A, Tovini M, et al. Chemie Ingenieur Technik, 2020, 92, 31. 11 Camillo S, Lorenz J, Matthias K, et al. ACS Applied Materials & Interfaces, 2021, 13, 3748. 12 Tian X L, Tao J, Tao H J, et al. The Chinese Journal of Nonferrous Metals, 2009, 19(5), 904 (in Chinese). 田西林, 陶杰, 陶海军, 等. 中国有色金属学报, 2009, 19(5), 904. 13 Yuan P, Robert J, William A. Journal of the American Chemical Society, 2017, 139, 149. 14 Olga K, Jan-Philipp G, Simon G, et al. Angewandte Chemie International Edition, 2018, 57, 2488. 15 Johannes G, Tim A, Adriaan W, et al. Journal of the American Chemical Society, 2018, 140, 10270. 16 Koshal K, Sulay S, Alhad P. Journal of the Electrochemical Society, 2018, 65(15), J3276. 17 Wenting X, Geir M, Svein S, etal. Electrochimica Acta, 2019, 295, 204. 18 Wang K, Han Y, Wang J T, et al. Electrochemistry, 2006, 12(1), 74 (in Chinese). 王科, 韩严, 王均涛, 等. 电化学, 2006, 12(1), 74. 19 Balaya P, Li H, Kienle L, et al. Advanced Functional Materials, 2003, 13, 621. 20 Roy C, Rao R, Stoerzinger K, et al. ACS Energy Letter, 2018, 3, 2045. 21 Escudero-Escribano M, Pedersen A, Paoli E, etal. Journal of Physical Chemistry B, 2018, 122, 947. 22 Terezo A, Pereira E. Electrochim Acta, 1999, 44, 4507. 23 Wang L, Saveleva V, Zafeiratos S, et al. Nano Energy, 2017, 34, 385. 24 Danilovic N. Journal of Physical Chemistry Letters, 2014, 5, 2474. 25 Kun D, Zhang L, Shan J, et al. Nature Communications, 2022, 13, 5448. 26 Retuerto M. Nature Communications, 2019, 10, 2041. 27 Qin Y, Yu T, Deng S, etal. Nature Communications, 2022, 13, 3784. 28 Yu T Q, Xu Q L, Qian G F, et al. ACS Sustainable Chemistry & Engineering, 2020, 8(47), 17520. 29 Chang S H, Danilovic N, Chang K C, et al. Nature Communications, 2014, 5, 4191. 30 Ling T, Lin D Y, Wang H, et al. Nature Communications, 2017, 8, 1509. 31 Yao S D, Shen J N, Sun J, et al. Rare Metal Materials and Engineering, 2006, 35(12), 1916 (in Chinese). 姚书典, 沈嘉年, 孙娟, 等. 稀有金属材料与工程, 2006, 35(12), 1916. 32 Xu H Q, Hu Y H, Chen L G, et al. Electroplating & Finishing, 2015, 34(23), 1369 (in Chinese). 徐海清, 胡耀红, 陈力格, 等. 电镀与涂饰, 2015, 34(23), 1369. 33 Fan Y Z, Wang K, Zhang Y, et al. New Technology & New Process, 2013(11), 115 (in Chinese). 范亚卓, 王昆, 张颖, 等. 新技术新工艺, 2013(11), 115. 34 Zhang Q, Peng J H, Cai C R, et al. Journal of Chinese Electron Microscopy Society, 2001, 20(4), 410 (in Chinese). 张琼, 彭俊华, 蔡传荣, 等. 电子显微学报, 2001, 20(4), 410. 35 Sun M M, Wang Q F, Zou J J, et al. Chemical Industry and Enginee-ring, 2014, 31(5), 8 (in Chinese). 孙猛猛, 王庆法, 邹吉军, 等. 化学工业与工程, 2014, 31(5), 8. 36 Chen Y Y, Tang D, Shao Y Q, et al. Journal of Fujian University of Technology, 2008, 6(6), 663 (in Chinese). 陈永毅, 唐电, 邵艳群, 等. 福建工程学院学报, 2008, 6(6), 663. 37 Zeng X A, Qin G F, Li Z Y, et al. Journal of South China University of Technology (Natural Science Edition), 2005, 33(10), 72 (in Chinese). 曾新安, 秦贯丰, 李忠彦, 等. 华南理工大学学报(自然科学版), 2005, 33(10), 72. 38 Feng Q, Yang R F, Wang Z, et al. Material Protection, 2021, 54(9), 37 (in Chinese). 冯庆, 杨瑞锋, 王正, 等. 材料保护, 2021, 54(9), 37. 39 Chen Y Y, Tang D. Rare Metal Materials and Engineering, 2009, 38(7), 1214 (in Chinese). 陈永毅, 唐电. 稀有金属材料与工程, 2009, 38(7), 1214. 40 Zhang Q, Yu Y L, Zhang T R. Journal of Fuzhou University (Natural Science Edition), 2004, 32(3), 317 (in Chinese). 张琼, 余运龙, 张天然. 福州大学学报(自然科学版), 2004, 32(3), 317. 41 Yao S D. Failure mechanism and surface modification for noble oxide coated titanium anodes. Ph. D. Thesis, Shanghai University, China, 2006 (in Chinese). 姚书典. 钛基贵金属氧化物涂层阳极的失效机制与表面改性. 博士学位论文, 上海大学, 2006. |
|
|
|