INORGANIC MATERIALS AND CERAMIC MATRIX COMPOSITES |
|
|
|
|
|
Biomass-derived Carbon Without Alkali Activation: an Efficient Functional Capacitive Desalination Material for Various Metal Ions |
CAO Zonglun1, SUN Jie1, LIAN Yue2, ZHANG Huaihao2,*
|
1 SINOPEC Beijing Research Institute of Chemical Industry, Beijing 100013, China 2 School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225002, Jiangsu, China |
|
|
Abstract As a new and green technology, capacitance desalination has the advantage of low cost and energy consumption. Thereinto, the selection of electrode material is key to this technology. In this work, a low-cost biomass-derived carbon (NC), as the electrode material with excellent desalination efficiency, can construct high permeability mesoporous structure without conventional alkali or molten salt activator usage. All the chemical reagents used in preparation process can be recycled and reused, which is in line with the current theme of green development. Meanwhile, the abundant heteroatomic defects and surface functional groups in biomass-derived carbon afford good hydrophilic and pseudocapacitive properties. A capacitive desalting device, assembled by NC as electrode material, can effectively remove NaCl in brine (Under the voltage of 1.2 V, the adsorption capacity of NaCl could reach 49.3 mg·g-1), and metal salts as well, such as Cr3+, Co2+( 78.8% salt ions can be desalted in 20 minutes).
|
Published:
Online: 2023-01-03
|
|
Fund:National Key Research and Development Program (2021YFC2102205) and Sinopec Key Project (321018). |
|
|
1 Zhang P, Li J, Chan-Park B. ACS Sustainable Chemistry & Engineering, 2020, 8, 9291. 2 Omosebi A, Gao X, Landon J, et al. ACS Applied Materials & Interfaces, 2014, 6, 12640. 3 Tsouris C, Mayes R, Kiggans J, et al. Environmental Science & Technology, 2011, 45, 10243. 4 Chen Z, Zhang H, Wu C, et al. Desalination, 2018, 433, 68. 5 Wang L, Dykstra J, Lin S. Environmental Science & Technology, 2019, 53, 3366. 6 Lee J, Jo K, Lee J, et al. ACS Sustainable Chemistry & Engineering, 2018, 6, 10815. 7 Li M, Park H. ACS Applied Materials & Interfaces, 2018, 10, 2442. 8 Biesheuvel M, Van-Limpt B, Wal A. The Journal of Physical Chemistry C, 2009, 113, 5636. 9 Jung Y, Yang Y, Kim T, et al. ACS Applied Materials & Interfaces, 2018, 10, 6207. 10 Dixit M, Moreno D, Xiao X, et al. ACS Materials Letters, 2019, 1, 71. 11 Porada S, Weinstein L, Dash R, et al. ACS Applied Materials & Interfaces, 2012, 4, 1194. 12 Li H, Zou L, Pan L, et al. Environmental Science & Technology, 2010, 44, 8692. 13 Xu Z, Li Y, Li D, et al. Applied Surface Science, 2018, 444, 661. 14 Jin H, Li J, Yuan Y, et al. Advanced Energy Materials, 2018, 8, 1. 15 Zheng Y, Lian Y, Wang D, et al. Vacuum, 2020, 181, 109746. 16 Ban C L , Xu Z, Wang D, et al. ACS Sustainable Chemistry & Enginee-ring, 2019, 7, 10742. 17 Zhang Z, Jia B, Liu L, et al. ACS Nano, 2019, 13, 11363. 18 Zhao J R, Hu J, Li J F, et al. Materials Letters, 2020, 261, 127146. 19 Zhang J, Fang J, Han J, et al. Journal of Materials Chemistry A, 2018, 6, 15245. 20 Zhao C, Zhang S, Sun N, et al. Environmental Science-Water Research & Technology, 2019, 5, 1054. 21 Zhang R, Gu X, Liu Y, et al. Applied Surface Science, 2020, 512, 145740. 22 Chao L, Liu Z, Zhang G, et al. Journal of Materials Chemistry A, 2015, 3, 12730. 23 Sun N, Li Z, Zhang X, et al. ACS Sustainable Chemistry & Engineering, 2019, 7, 8735. 24 Feng C, Chen Y, Yu C, et al. Chemosphere, 2018, 208, 285. 25 Yao X J, Cai Y G, Guo M Y, et al. Micronanoelectronic Technology, 2020, 57(4), 270(in chinese) 姚雪娇, 蔡亚果, 郭梦月, 等. 微纳电子技术, 2020, 57(4), 270. 26 Zhu G P, Liu Z N, Liu Q Z, et al. Materials Reports A: Research Papers, 2011, 25(7), 44(in Chinese) 朱光平, 刘忠良, 刘亲壮, 等. 材料导报:研究篇, 2011, 25(7), 44. |
|
|
|