| POLYMERS AND POLYMER MATRIX COMPOSITES | 
									
										
		  							 | 
          							
		  									  								 
		  									  							|
		  									  								 
		  									  							 | 
        						 
      						 
      					 | 
  					 
  					
    					 | 
   					 
   										
    					| Non-covalent Interaction in Molecular Recognition of Porphyrin:an Overview | 
  					 
  					  										
						| JI Dongfang, SHI Tingting, CHANG Huan, SONG Xufeng, YU Yanmin
 | 
					 
															
						| Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry and Chemical Engineering, Beijing University of Technology, Beijing 100124 | 
					 
										
						 | 
					 
				 
				
				
					
						
							
								
									
										
											
                        					 
												
													
													    | 
													    	
														 | 
													 
																										
													
														
															
													
													    | 
													     		                            						                            																	    Abstract  Porphyrins have been widely used in the field of supramolecular chemistry due to their special molecular recognition properties. This paper provides a comprehensive review about the present researches on the molecular recognition of porphyrin compounds. The non-covalent interactions in molecular recognition progress of porphyrin compounds are introduced in detail. In particular, the hydrogen bonding, coordination, π-π stacking and electrostatic interaction are discussed with emphasis. In addition, the potential development of porphyrin molecular recognition is proposed.
																										     | 
														 
														
														
															| 
															    															    															    																	Published: 19 September 2018
															    															 | 
														 
														 														
															| 
																
															 | 
														 
																																									    																														 
															 | 
																															
															
													    	
															 | 
																
															
														 
														
													 
													
												 
												
												
												
												
																					            
									                
																														  
																 1 Peng Y L, Wang S J. Molecular recognition of porphyrin and metal-porphyrin[J].Journal of Langfang Teachers College,2005(4):100(in Chinese). 
彭玉苓,王树军.卟啉的分子识别研究进展[J].廊坊师范学院学报,2005(4):100. 
2 Iimura Y, Fukuyama M, Hibara A, et al. Enhanced chiral recognition by beta-cyclodextrin at liquid/liquid interfaces as revealed by chromatographic and interfacial tension measurements[J].Journal of Colloid and Interface Science,2017:508:469. 
3 Liao W, Chuang M, Ho J A. Electrochemical sensor for multiplex screening of genetically modified DNA: Identification of biotech crops by logic-based biomolecular analysis[J].Biosensors and Bioelectronics,2013,50:414. 
4 Zhang D W, Martinez A, Dutasta J P. Emergence of hemicryptophanes: From synthesis to applications for recognition, molecular machines, and supramolecular catalysis[J].Chemical Reviews,2017,117:4900. 
5 Nandre K P, Bhosale S V, Krishna K, et al. A phosphonic acid appended naphthalene diimide motif for self-assembly into tunable nanostructures through molecular recognition with arginine in water[J].Chemical Communications,2013,49(48):5444. 
6 Wickstrom L, He P, Gallicchio E, et al. Large scale affinity calculations of cyclodextrin host-guest complexes: Understanding the role of reorganization in the molecular recognition process[J].Journal of Chemical Theory and Computation,2013,9(7):3136. 
7 Dong S Y, Gao L Y, Chen J Z, et al. A supramolecular polymer formed by the combination of crown ether-based and charge-transfer molecular recognition[J].Polymer Chemistry,2013,4(4):882. 
8 Moriwaki Y, Caaveiro J M M, Tanaka Y, et al. Molecular basis of recognition of antibacterial porphyrins by heme-transporter IsdH-NEAT3 of staphylococcus aureus[J].Biochemistry,2011,50(34):7311. 
9 Ghosh S, Pradhan S K, Kar A, et al. Molecular basis of recognition of quadruplexes human telomere and c-myc promoter by the putative anticancer agent sanguinarine[J].Biochimica ET Biophysica Acta-Genral Subjects,2013,1830(8):4189. 
10 Diaz C, Catalan-Toledo J, Flores M E, et al. Dispersion of the photosensitizer 5,10,15,20-tetrakis(4-sulfonatophenyl)-porphyrin by the amphiphilic polymer poly (vinylpirrolidone) in highly porous solid materials designed for photodynamic therapy[J].Journal of Physical Chemistry B,2017,121(30):7373. 
11 Shi T T, Ji D F, Yu Y M. Advances in porphyrin aggregation beha-vior[J].Materials Review A:Review Papers,2017,31(5):46(in Chinese). 
史婷婷,姬东方,于艳敏.卟啉聚集行为的研究进展[J].材料导报:综述篇,2017,31(5):46. 
12 Jintoku H, Takafuji M, Oda R, et al. Enantioselective recognition by a highly ordered porphyrin-assembly on a chiral molecular gel[J].Chemical Communications,2012,48(40):4881. 
13 Kalenius E, Koivukorpi J, Kolehmainen E, et al. Noncovalent saccharide recognition by means of a tetrakis(bile acid)-porphyrin conjugate: Selectivity, cooperation, and stability[J].European Journal of Organic Chemistry,2010,2010(6):1052. 
14 Xu H, Yu D Y, Que G H, et al. Study on axial coordination of meta-lloporphyrins with Lewis bases by UV-VIS spectrophotometry[J].Acta Petrolei Sinica (Petroleum Processing Section),2002,18(6):61(in Chinese). 
徐海,于道永,阙国和,等.紫外可见分光光度法研究金属卟啉与Lewis碱性溶剂的轴向配位作用[J].石油学报(石油加工),2002,18(6):61. 
15 Whittington C L, Maza W A, Woodcock H L, et al. Understanding ion sensing in Zn (Ⅱ) porphyrins: Spectroscopic and computational studies of nitrite/nitrate binding[J].Inorganic Chemistry,2012,51(8):4756. 
16 Bao X P, Zhang H, Zhang Z, et al. Synthesis of a novel doubly strapped zinc porphyrin and its recognition property for anions[J].Inorganic Chemistry Communications,2007,10(6):728. 
17 Mizutani T, Ema T, Yoshida T, et al. Recognition of alpha-amino acid esters by zinc porphyrin derivatives via coordination and hydrogen bonding interactions. Evidence for two-point fixation from thermodynamic and induced circular dichroism spectroscopic studies[J].Inorganic Chemistry,1993,32(10):2072. 
18 Mizutani T, Murakami T, Ogoshi H. Dynamics of molecular recognition of multi-point host-guest complex[J].Tetrahedron Letters,1996,37(30):5369. 
19 Imai H, Nakagawa S, Kyuno E. Recognition of axial ligands by a zinc porphyrin host on the basis of nonpolar interligand interaction[J].Journal of the American Chemical Society,1992,114(17):6719. 
20 Imai H, Munakata H, Uemori Y, et al. Chiral recognition of amino acids and dipeptides by a water-soluble zinc porphyrin[J].Inorganic Chemistry,2004,43(4):1211. 
21 Kishida T, Fujita N, Hirata O, et al. Axial coordination changes the morphology of porphyrin assemblies in an organogel system[J].Organic & Biomolecular Chemistry,2006,4(10):1902. 
22 Cao J, Liu J C, Chen L W, et al. Two new self-assemblies of two zinc porphyrin with isonicotinic acid by metal-ligand axial coordination and their applications in supramolecular solar cell[J].Tetrahedron Letters,2013,54(29):3851. 
23 Achey D, Meyer G J. Ligand coordination and spin crossover in a nickel porphyrin anchored to mesoporous TiO2 thin films[J].Inorganic Chemistry,2013,52(16):9574. 
24 Koo J, Cho J J, Yang J H, et al. Surface modification of zinc oxide nanorods with Zn-porphyrin via metal-ligand coordination for photovoltaic applications[J].Bulletin of the Korean Chemical Society,2012,33(2):636. 
25 Wu X, Starnes S D. l-Nipecotic acid-porphyrin derivative: A chiral host with introverted functionality for chiral recognition[J].Organic Letters,2012,14(14):3652. 
26 Monnereau C, Rebilly J N, Reinaud O. Synthesis and first studies of the host-guest and substrate recognition properties of a porphyrin-tethered Calix[6] arene ditopic ligand[J].European Journal of Organic Chemistry,2011,2011(1):166. 
27 Kim Y, Hong J. Molecular recognition of carbohydrates through directional hydrogen bonds by urea-appended porphyrins in organic media[J].Angewandte Chemie International Edition,2002,41(16):2947. 
28 Lee J D, Jang D, Hong J I. Molecular recognition of amino sugars by a porphyrin-based receptor in aqueous media[J].Notes,2010,31(9):2685. 
29 Lee J D, Kim Y H, Hong J I. Carbohydrate recognition through H-bonding and CH-pi interactions by porphyrin-based receptors[J].The Journal of Organic Chemistry,2010,75(22):7588. 
30 Gilday L C, White N G, Beer P D. Halogen-and hydrogen-bonding triazole-functionalised porphyrin-based receptors for anion recognition[J].Dalton Transactions,2013,42(44):15766. 
31 Xie Z Y, Ou Y Q, Zhu Y Z, et al. Synthesis of a novel bisimidazo-lium branched Zinc metalloporphyrin and its recognition for halide anion[J].Chemical Journal of Chinese Universities,2009(7):1332(in Chinese). 
谢朝阳,欧阳勤,朱义州,等.咪唑修饰的卟啉化合物的合成及其对卤素离子的选择性识别[J].高等学校化学学报,2009(7):1332. 
32 Wienkers M, Ramos J, Jemal H, et al. Enhanced shape-selective recognition of anion guests through complexation-induced organization of porphyrin hosts[J].Organic Letters,2012,14(6):1370. 
33 Dudic M, Lhoták P, Stibor I, et al. Calix[4]arene-porphyrin conjugates as versatile molecular receptors for anions[J].Organic Letters,2003,5(2):149. 
34 Xie J, Chen X, Huang Z, et al. Computational simulation study on the anion recognition properties of functionalized tetraphenyl porphyrins[J].Journal of Molecular Modeling,2015,21(6):140. 
35 Aoyama Y, Asakawa M, Matsui Y, et al. Molecular recognition. 16. Molecular recognition of quinones: Two-point hydrogen-bonding strategy for the construction of face-to-face porphyrin-quinone architectures[J].Journal of the American Chemical Society,1991,113(16):6233. 
36 Hayashi T, Miyahara T, Koide N, et al. Molecular recognition of ubiquinone analogues. Specific interaction between quinone and functional porphyrin via multiple hydrogen bonds[J].Journal of the American Chemical Society,1997,119(31):7281. 
37 D’Souza F, Deviprasad G R. Studies on porphyrin-quinhydrone complexes: Molecular recognition of quinone and hydroquinone in solution[J].The Journal of Organic Chemistry,2001,66(13):4601. 
38 Tanaka K, Yamamoto Y, Machida I, et al. Quinone recognition by amide hydrogen bonding in porphyrin systems[J].Journal of Chemical Society Perkin Transacitons,1999,11(2):285. 
39 Mang Z Y, Zhao X, Liu C P, et al. Chiral recognitions of organic small molecules by Cobalt(Ⅲ)-porphyrin[J].Acta Chimica Sinica,2008,66(2):195(in Chinese). 
莽朝永,赵霞,刘彩萍,等.钴卟啉对有机小分子的手性识别[J].化学学报,2008,66(2):195. 
40 Noworyta K, Kutner W, Wijesinghe C A, et al. Nicotine, cotinine, and myosmine determination using polymer films of tailor-designed zinc porphyrins as recognition units for piezoelectric microgravimetry chemosensors[J].Analytical Chemistry,2012,84(5):2154. 
41 Lipstman S, Goldberg I. Supramolecular crystal chemistry with porphyrin tinkertoys. Hydrogen-bonding and coordination networks with the “Chair” and “Table” conformers of tetra(3-carboxyphenyl)porphyrin[J].Crystal Growth & Design,2013,13(2):942. 
42 Zhang Y, Lei Y C, Pan J H, et al. Molecular recognitions of purines by hematoporphyrin and metalloporphyrin receptors[J].Spectroscopy and Spectral Analysis,2004,24(10):1241(in Chinese). 
张勇,雷亚春,潘景浩,等.血卟啉及金属血卟啉对嘌呤衍生物识别作用的研究[J].光谱学与光谱分析,2004,24(10):1241. 
43 Yanagisawa S, Crowley P B, Firbank S J, et al. π-interaction tuning of the active site properties of metalloproteins[J].Journal of the American Chemical Society,2008,130(46):15420. 
44 Takai A, Chkounda M, Eggenspiller A, et al. Efficient photoinduced electron transfer in a porphyrin tripod-fullerene supramolecular complex via π-π interactions in nonpolar media[J].Journal of the American Chemical Society,2010,132(12):4477. 
45 Angiolini L, Benelli T, Giorgini L. Polymethacrylic zinc porphyrin: A new approach to chiral recognition[J].Reactive and Functional Polymers,2011,71(2):204. 
46 Dimitrijevic B P, Borozan S Z, Stojanovic S D. pi-pi and cation-pi interactions in protein-porphyrin complex crystal structures[J].Royal Society of Chemistry Advances,2012,2(33):12963. 
47 Tong S L, Zhang J, Yan Y, et al. Self-assembled supramolecular architecture with alternating porphyrin and phthalocyanine, bonded by hydrogen bonding and pi-pi stacking[J].Solid State Sciences,2011,13(11):1967. 
48 Geng J, Jung H T. Porphyrin functionalized graphene sheets in aqueous suspensions: From the preparation of graphene sheets to highly conductive graphene films[J].The Journal of Physical Chemistry C,2010,114(18):8227. 
49 Bera R, Jana B, Mondal B, et al. Design of CdTeSe-porphyrin-graphene composite for photoinduced electron transfer and photocurrent generation[J].ACS Sustainable Chemistry & Engineering,2017,5(4):3002. 
50 Mcdonald N A, Subramani C, Caldwell S T, et al. Simultaneous hydrogen bonding and π-stacking interactions between flavin/porphyrin host-guest systems[J].Tetrahedron Letters,2011,52(17):2107. 
51 Li Y, Ruan W J, Wang C Z, et al. The study of molecular recognition of zinc porphyrins with intramolecular π-π interaction[J].Acta Scientiarum Naturalium Universitatis Nankaiensis (Natural Science Edition),1999,32(3):123(in Chinese). 
李瑛,阮文娟,王传忠,等.具有分子内π-π作用的锌卟啉的分子识别研究[J].南开大学学报(自然科学版),1999,32(3):123. 
52 Wang S J, Zang N, Ruan W J, et al. Molecular recognition of chiral zinc porphyrin with amino acid ester derivatives[J].Acta Physico-Chimica Sinica,2008,24(3):507(in Chinese). 
王树军,臧娜,阮文娟,等.手性锌卟啉与氨基酸酯的分子识别性能[J].物理化学学报,2008,24(3):507. 
53 Murakami R, Minami A, Mizutani T. Molecular recognition in anisotropic media. Binding of alkylpyridines to amphiphilic zinc porphyrins incorporated in liposomal bilayer membranes[J].Organic & Biomolecular Chemistry,2009,7(7):1437. 
54 Lipstman S, Goldberg I. Supramolecular crystal chemistry of tetra(3-pyridyl)porphyrin. 2. Two- and three-dimensional coordination networks with cobalt and cadmium ions[J].Crystal Growth & Design,2010,10(11):5001. 
55 El-Hachemi Z, Mancini G, Ribó J M, et al. Role of the hydrophobic effect in the transfer of chirality from molecules to complex systems: From chiral surfactants to porphyrin/surfactant aggregates[J].Journal of the American Chemical Society,2008,130(45):15176. 
56 Zeng L, He Y, Dai Z, et al. Chiral induction, memory, and amplification in porphyrin homoaggregates based on electrostatic interactions[J].Chemphyschem A European Journal of Chemical Physics & Physical Chemistry,2009,10(6):954. 
57 Mizutani T, Wada K, Kitagawa S. Molecular recognition of amines and amino esters by zinc porphyrin receptors: Binding mechanisms and solvent effects[J].The Journal of Organic Chemistry,2000,65(19):6097. 
58 Rebouças J S, James B R. Molecular recognition using ruthenium(Ⅱ) porphyrin thiol complexes as probes[J].Inorganic Chemistry,2013,52(2):1084. 
59 Villari V, Mineo P, Scamporrino E, et al. Amino acids recognition by water-soluble uncharged porphyrin tweezers: Spectroscopic evidences in high optical density solutions[J].Chemical Physics,2012,402:118. 
60 Kokhan O, Ponomarenko N, Pokkuluri P R, et al. Multimerization of solution-state proteins by tetrakis(4-sulfonatophenyl)porphyrin[J].Biochemistry,2014,53(31):5070. 
61 Iwamoto H, Mizutani T, Kano K. Thermodynamics of hydrophobic interactions: Entropic recognition of a hydrophobic moiety by poly (ethylene oxide)-zinc porphyrin conjugates[J].Chemistry-An Asian Journal,2007,2(10):1267. 
62 Eguchi M, Shimada T, Tryk D A, et al. Role of hydrophobic inte-raction in controlling the orientation of dicationic porphyrins on solid surfaces[J].The Journal of Physical Chemistry C,2013,117(18):9245. 
63 Deda D K, Pavani C, Carita E, et al. Correlation of photodynamic activity and singlet oxygen quantum yields in two series of hydrophobic monocationic porphyrins[J].Journal of Porphyrins and Phthalocyanines,2012,16(1):55. 
64 Corbellini F, Di Costanzo L, Crego-Calama M, et al. Guest encapsulation in a water-soluble molecular capsule based on ionic interactions[J].Journal of the American Chemical Society,2003,125(33):9946. 
65 Corbellini F, Knegtel R, Grootenhuis P, et al. Water-soluble mole-cular capsules: Self-assembly and binding properties[J].Chemistry -A European Journal,2005,11(1):298. 
66 Oshovsky G V, Reinhoudt D N, Verboom W. The underestimated role of counter ions in electrostatic self-assembly:[1+1] cavitand-calix[4]arene capsules based on azinium-sulfonate interactions[J].European Journal of Organic Chemistry,2006,12:2810. 
67 Garg B, Bisht T, Chauhan S. Electrostatic interaction between ca-tionic calix[4]pyrroles and anionic porphyrins in water[J].Journal of Inclusion Phenomena and Macrocyclic Chemistry,2010,67(1-2):241. 
68 D′ Urso A, Di Mauro A, Cunsolo A, et al. Solvophobic versus electrostatic interactions drive spontaneous adsorption of porphyrins onto inorganic surfaces: A full noncovalent approach[J].The Journal of Physical Chemistry C,2013,117(34):17659. | 
															   
																													 
									             
									            												
												
												
												
											
											 
											
											 
										 
									 | 
								 
							 
						 | 
					 
				 
				
			
		 |