METALS AND METAL MATRIX COMPOSITES |
|
|
|
|
|
Recent Progress in Heat-resistant Aluminum Alloy Fabricated by Laser Powder Bed Fusion Additive Manufacturing |
LIU Shujun1, XIAO Wenlong2,*, YANG Changyi2, WU Shufan2
|
1 Army Logistics Academy of PLA, Chongqing 401311, China 2 School of Materials Science and Engineering, Beihang University, Beijing 100191, China |
|
|
Abstract With the rapid development of the aerospace industry, the demand for high-performance heat-resistant aluminum alloys will continue to increase in the future. In order to realize the one-step molding of complex components, laser powder bed fusion (L-PBF) additive manufacturing technology has become a hot research topic. The building parts manufactured by L-PBF additive manufacturing have a better overall performance than conventional casting manufacturing. At present, the researches on room-temperature high strength-ductility aluminum alloys are relatively comprehensive, but the researches on heat-resistant aluminum alloys are still in the initial stage. This review firstly introduces the L-PBF additive manufacturing technology, then summarizes the research on heat-resistant aluminum alloy systems and corresponding high-temperature properties in recent years, presents a brief overview of the current problems and challenges, finally looks forward to the main research interests in the future.
|
Published:
Online: 2024-10-12
|
|
Fund:This work was financially supported by the Foundation of Army Logistics Academy of PLA(LQ-ZD-202412). |
|
|
1 Bonnín Roca J, Vaishnav P, Fuchs E R H, et al. Nature Materials, 2016, 15(8), 815. 2 Wang J, Zhu R, Liu Y, et al. Advanced Powder Materials, 2023, 2(4), 100137. 3 Yang Qiang, Lu Zhongliang, Huang Fuxiang, et al. Aeronautical Manufacturing Technology, 2016(12), 6 (in Chinese). 杨强, 鲁中良, 黄福享, 等. 航空制造技术, 2016(12), 6. 4 Pollock T M. Nature Materials, 2016, 15(8), 809. 5 Zhang Anfeng, Li Dichen, Liang Shaoduan, et al. Aeronautical Manufacturing Technology, 2016(22), 7 (in Chinese). 张安峰, 李涤尘, 梁少端, 等. 航空制造技术, 2016(22), 7. 6 Shi Y, Gong S, Xu H, et al. Journal of Materials Research and Technology, 2023, 27, 6225. 7 Dharmalingam G, Baskar R, Arun Prasad M, et al. Materials Today, Proceedings, 2022, 68, 1891. 8 Wawrzyniak N, Provencher P R, Brochu M, et al. Materials Characterization, 2023, 203, 113117. 9 Zhang J, Song B, Wei Q, et al. Journal of Materials Science & Technology, 2019, 35(2), 270. 10 Zhao Xiaoming, Qi Yuanhao, Yu Quancheng, et al. Foundry Technology, 2016, 37(11), 3(in Chinese). 赵晓明, 齐元昊, 于全成, 等. 铸造技术, 2016, 37(11), 3. 11 Sun J E, Gao L, Liu Q, et al. Materials Science and Engineering: A, 2023, 872, 145003. 12 Li D, Wu Y, Geng Z, et al. Journal of Alloys and Compounds, 2023, 939, 168722. 13 Zhu Z, Ng F L, Seet H L, et al. Materials Today, 2022, 52, 90. 14 Zhou S Y, Su Y, Wang H, et al. Additive Manufacturing, 2020, 36, 101458. 15 Sun T, Chen J, Wu Y, et al. Materials Science and Engineering: A, 2022, 850, 143531. 16 Chen Jinlong. Research on compositon design and microstructure properties of new heat resistant aluminum alloy. Master’s Thesis, Southeast University, China, 2020 (in Chinese). 陈金龙. 新型耐热铝合金成分设计及组织性能研究. 硕士学位论文, 东南大学, 2020. 17 Ma Li, Zhao He, Zan Ningning, et al. Materials Reports, 2021, 35(S1), 414(in Chinese). 马力, 赵赫, 昝宇宁, 等. 材料导报, 2021, 35(S1), 414. 18 Zhang Qi. Nonferrous Metals Processing, 2021, 50(1), 1(in Chinese). 张琪. 有色金属加工, 2021, 50(1), 1. 19 Liu Yingying, Zheng Lijing, Zhang Hu. Journal of Materials Engineering, 2015, 43(11), 7 (in Chinese). 刘莹莹, 郑立静, 张虎. 材料工程, 2015, 43(11), 7. 20 Qin Yanli, Sun Bohui, Zhang Hao, et al. Chinese Journal of Lasers, DOI:10. 3788/CJL202148. 1402002(in Chinese). 秦艳利, 孙博慧, 张昊, 等. 中国激光, DOI:10. 3788/CJL202148. 1402002. 21 Li S S, Yue X, Li Q Y, et al. Journal of Materials Research and Technology, 2023, 27, 944. 22 Li Peiyong. Aeronautical Manufacturing Technology, 2020, 63(7), 16(in Chinese). 李沛勇. 航空制造技术, 2020, 63(7), 16. 23 Knipling K E, Dunand D C, Seidman D N. Ztschrift Fur Metallkunde, 2006, 97(3), 246. 24 De Araujo A P M, Kiminami C S, Uhlenwinkel V, et al. Materials Science and Engineering:A, 2023, 886, 145670. 25 Xu J Y, Zhang C, Liu L X, et al. Journal of Materials Science & Technology, 2023, 137, 56. 26 Wang W, Takata N, Suzuki A, et al. Crystals, 2021, 11(3), 320. 27 De Araujo A P M, Pauly S, Batalha R L, et al. Additive Manufacturing, 2021, 41, 101960. 28 Wang W, Takata N, Suzuki A, et al. Additive Manufacturing, 2023, 68, 103524. 29 Plotkowski A, Sisco K, Bahl S, et al. Acta Materialia, 2020, 196, 595. 30 Deng J, Chen C, Liu X, et al. Scripta Materialia, 2021, 203, 114034. 31 Ding R, Deng J, Liu X, et al. Journal of Alloys and Compounds, 2023, 934, 167894. 32 Bahl S, Plotkowski A, Sisco K, et al. Acta Materialia, 2021, 220, 117285. 33 Fang Z C, Wu Z L, Huang C G, et al. Optics & Laser Technology, 2020, 129, 106283. 34 Sun S B, Zheng L J, Liu J H, et al. Rare Metals, 2023, 42 (4), 1353. 35 Azarmi F, Sevostianov I. Current Opinion in Chemical Engineering, 2020, 28, 21. 36 Kang N, Fu Y, Coddet P, et al. Materials & Design, 2017, 132, 105. 37 Li W, Qian F, Li J, et al. Additive Manufacturing, 2023, 68, 103513. 38 Li G, Tunca B, Senol S, et al. Additive Manufacturing, 2023, 66, 103460. 39 Li G, Huang Y, Li X, et al. Additive Manufacturing, 2022, 60, 103296. 40 Bi J, Wu L, Liu Z, et al. Journal of Materials Science & Technology, 2024, 178, 59. 41 Pérez-Prado M T, Martin A, Shi D F, et al. Additive Manufacturing, 2022, 55, 102828. 42 Gao Yihan, Liu Gang, Sun Jun. Acta Metallurgica Sinica, 2021, 57(2), 129(in Chinese). 高一涵, 刘刚, 孙军. 金属学报, 2021, 57(2), 129. 43 Bi J, Lei Z, Chen Y, et al. Journal of Materials Science & Technology, 2021, 69, 200. 44 Yan Y, Lu C, Chen Z, et al. Metals, 2023, 13(4), 788. |
[1] |
WANG Zijian, SUN Shulei, XIAO Han, RAN Xudong, CHEN Qiang, HUANG Shuhai, ZHAO Yaobang, ZHOU Li, HUANG Yongxian. Research Status of Additive Friction Stir Deposition[J]. Materials Reports, 2024, 38(9): 22100039-16. |
|
|
|
|