INORGANIC MATERIALS AND CERAMIC MATRIX COMPOSITES |
|
|
|
|
|
Effect of the Amount of Graphene Oxide on the Electrochemical Properties of MoSe2 Composite rGO Electrode Materials |
ZHENG Donghao1, HE Geping1,*, MI Yuanmei1, HUANGFU Huijun2, ZHANG Huimin1, LI Yanxia1, YUAN Hudie1
|
1 College of Materials Science and Engineering,Xi’an University of Architecture and Technology,Xi’an 710055,China 2 Shaanxi Chemical Reserch Institute Co.Ltd,Xi’an 710069,China |
|
|
Abstract The development of high-performance supercapacitor electrode materials plays an important role in promoting the effective use of renewable energy.In this work,MoSe2-reduced graphene oxide (rGO) composite electrode materials (MoSe2-rGO) for supercapacitors were synthesized by a simple one-step hydrothermal method.It was found that the addition amount of graphene oxide (GO) affected the electrochemical properties of the composites.As the amount of GO added increases,the specific capacitance of the composites increased first and then decreased.The MoSe2-rGO-30 composite with GO addition of 30 mg has the best specific capacitance of 558.2 F·g-1 at 1 A·g-1,and the energy density is as high as 84.4 Wh·kg-1 at a power density of 990 W·kg-1.The reaction kinetics reveals that the diffusion capacitance dominates the electrochemical energy storage process of MoSe2-rGO.The ion diffusion coefficient of MoSe2-rGO-30 calculated according to the Randles-Sevcik equation is 6.2 times that of pure MoSe2.The synergistic effect of MoSe2 and highly conductive rGO endows MoSe2-rGO composites with good electrochemical performance,indicating that MoSe2-rGO composites have the potential as electrode materials for high-performance supercapacitors.
|
Published: 25 August 2024
Online: 2024-09-10
|
|
Fund:Fund of the Open Fund of Key Laboratory of Petroleum Fine Chemicals in Shaanxi Province(SH1420SKF0003, SH1516SKF0002), the Innovation and Entrepreneurship Training Program for College Students in Shaanxi Province (4191, 4602), the State Key Laboratory of Solidification Processing in NWPU(SKLSP201749), and Key Research and Development Program of Shaanxi Province (2024GX-YBXM-394). |
|
|
1 Rahul K, Arora S. Materials Today:Proceedings, 2022, 54, 728. 2 Tanwar S, Singh N, Sharma A L. Journal of Energy Storage, 2022, 45, 103797. 1. 3 Sharma K, Arora A, Tripathi S K. Journal of Energy Storage, 2019, 21, 801. 4 Kumar N, Pradhan L, Jena B K. WIREs Energy and Environment, 2021, 11(1), 415. 5 Shao Y, El-Kady M F, Sun J, et al. Chemical Reviews, 2018, 118(18), 9233. 6 Yang H, Kannappan S, Pandian A S, et al. Nanotechnology, 2017, 28(44), 445401. 7 Eftekhari A. Applied Materials Today, 2017, 8, 1. 8 Li Y, Zhang Y, Tong X, et al. Journal of Materials Chemistry A, 2021, 9(3), 1418. 9 Huan Y, Zhu L, Li N, et al. Chinese Science Bulletin, 2020, 66(1), 34. 10 Luo Z, Zhou J, Wang L, et al. Journal of Materials Chemistry A, 2016, 4(40), 15302. 11 Wang M, Huang H X, Qi P T, et al. Materials Reports, 2019, 33(6), 927(in Chinese). 王鸣, 黄海旭, 齐鹏涛等. 材料导报, 2019, 33(6), 927. 12 Tan Y B, Lee J M. Journal of Materials Chemistry A, 2013, 1(47), 14814. 13 Yao Z, Yu C, Dai H, et al. Carbon, 2022, 187, 165. 14 Zhao X, Cai W, Yang Y, et al. Nano Energy, 2018, 47, 224. 15 Chen J, Yao B, Li C, et al. Carbon, 2013, 64, 225. 16 Upadhyay S, Pandey O P. Journal of Alloys and Compounds, 2021, 857, 157522. 17 Kang W W. Preparation of nickel (cobalt) and bismuth based electrode active materials and their electrochemical performances. Ph. D. Thesis, Southeast University, China, 2021(in Chinese). 康伟伟. 镍(钴)、铋基电极活性材料的制备及其电化学性能研究. 博士学位论文, 东南大学, 2021. 18 Lu Z C, Liu J. Kong L B. Solid State Ionics, 2022, 374, 115815. 19 Guo W, Le Q V, Hasani A, et al. Polymers, 2018, 10(12), 1309. 20 Su Q, Cao X, Yu T, et al. Journal of Materials Chemistry A, 2019, 7(40), 22871. 21 Wang Y, Kang W, Pu X, et al. Nano Energy, 2022, 93, 106897. 22 Hu X, Zhu R, Wang B, et al. Chemical Engineering Journal, 2022, 440, 135819. 23 Méndez-Reséndiz A, Antonio Méndez-Romero U, Antonio Mendoza-Jiménez R, et al. FlatChem, 2023, 38, 100483. 24 Arvas M B, Gürsu H, Gencten M, et al. Journal of Energy Storage, 2022, 55, 396. 25 Li X, Lai W, Gan Y, et al. Journal of Alloys and Compounds, 2022, 890, 161746. 26 Tanwar S, Singh N, Sharma A L. Materials Today:Proceedings, 2022, 57, 94. 27 Bui H T, Jang H, Ahn D, et al. Electrochimica Acta, 2021, 368, 137556. 28 Zhang B M, Zhang C B, Zhang H, et al. Applied Surface Science, 2020, 513, 145826. 29 Xu L, Ma L, Ling Y, et al. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2018, 551, 87. 30 Guo H, Ning J, Wang B, et al. Journal of Alloys and Compounds, 2021, 853, 157116. 31 Shen J, Wu J, Pei L, et al. Advanced Energy Materials, 2016, 6(13), 1600341. 32 Huang C P, Li S S, Qi T L, et al. Acta Materiae Compositae Sinica, 2021, 38(7), 2274(in Chinese). 黄翠萍, 黎杉珊, 漆天乐, 等. 复合材料学报, 2021, 38(7), 2274. 33 Sankar S, Inamdar A I, Im H, et al. Ceramics International, 2018, 44(14), 17514. 34 Zhao J, Jiang Y, Fan H, et al. Advanced Materials, 2017, 29(11), 1604569. 35 Gao X, Yue H, Guo E, et al. Journal of Materials Science:Materials in Electronics, 2017, 28(23), 17939. 36 Pallavolu M R, Banerjee A N, Nallapureddy R R, et al. Journal of Materials Science and Technology, 2022, 96, 332. |
|
|
|