INORGANIC MATERIALS AND CERAMIC MATRIX COMPOSITES |
|
|
|
|
|
Optimization of Growth and Electrocatalytic Oxygen Evolution of Nickel-Iron Dihydroxide by Response Surface Method |
LIU Xiangyang1, WANG Yi2, XIA Shuang1, LIU Zhongqing1,*
|
1 College of Chemical Engineering, Sichuan University, Chengdu 610065, China 2 College of Chemical Engineering, Sichuan University of Science & Technology, Zigong 643000, Sichuan, China |
|
|
Abstract The layered nickel-iron dihydroxide electrocatalysts were prepared by corrosion engineering. The physicochemical properties of the samples were characterized by X-ray diffraction, field emission scanning electron microscopy, high resolution transmission electron microscopy and photoelectron spectroscopy. Linear voltammetry characteristic curve, Tafel curve, electrochemical impedance spectrum, cyclic voltammetry cha-racteristic and constant-current potential-time curve were used to analyze the electrocatalytic oxygen evolution characteristics of samples in detail. On the basis of single factor experiment, with 50 mA·cm-2 corresponding to the oxygen evolution potential for response factor, by using the response surface method on the main factors affecting the catalyst performance is optimized, established the oxygen evolution after the foam nickel iron corrosion potential of the polynomial model. And the corrosion temperature of 80 ℃, time of 9 h, NiSO4 concentration of 9 mmol·L-1 are the optimization of the preparation conditions. The sample prepared under this condition has an overpotential of 200 mV at 10 mA·cm-2 and a Tafel slope of 52.5 mV·dec-1. After 48 h continuous testing at 50 mA·cm-2 current density, the OER catalytic activity remaines at 95%, showing better electrocatalytic activity than the commercial RuO2 electrode.
|
Published: 25 August 2024
Online: 2024-09-10
|
|
|
|
1 Song J, Wei C, Huang Z-F, et al. Chemical Society Reviews, 2020, 49(7), 2196. 2 Gao S, Wang B, Liu X, et al. Nanoscale, 2018, 10(21), 10288. 3 Fan Y, Zhang X, Zhang Y, et al. Journal of Colloid and Interface Science, 2021, 604, 508. 4 Wu Z, Lu X F, Zang S, et al. Advanced Functional Materials, 2020, 30(15), 1910274. 5 Du F, Liu S, Gu J J, et al. Chinese Journal of Inorganic Chemistry, 2021(5), 37 (in Chinese). 杜芳, 刘帅, 古京九, 等. 无机化学学报, 2021(5), 37. 6 Zhang T R, Wang S Y. Acta Physico-Chimica Sinica, 2021, 37(7), 3 (in Chinese). 张铁锐, 王双印. 物理化学学报, 2021, 37(7), 3. 7 Liao C, Yang B, Zhang N, et al. Advanced Functional Materials, 2019, 29(40), 1904020. 8 Li C, Chen J, Wu Y, et al. International Journal of Hydrogen Energy, 2019, 44(5), 2656. 9 Duan Y, Sun S, Sun Y, et al. Advanced Materials, 2019, 31(12), 1807898. 10 Wang Y, Chen G, Xie J, et al. International Journal of Hydrogen Energy, 2022, 47(92), 39108. 11 Wang Y, Wang B, Liu X, et al. ACS Applied Energy Materials, 2022, 5(7), 8686. 12 Acharya P, Manso R H, Hoffman A S, et al. ACS Catalysis, 2022, 12(3), 1992. 13 Wu X, Li M, Li Q, et al. International Journal of Hydrogen Energy, 2022, 47(10), 6691. 14 Zhang H, Pan Q, Sun Z, et al. Nanoscale, 2019, 11(24), 11505. 15 Wang R, Yang Y, Sun Z, et al. International Journal of Hydrogen Energy, 2022, 47(5), 2958. 16 Lan W, Li D, Wang W, et al. International Journal of Hydrogen Energy, 2020, 45(1), 412. 17 Xu X, Wang R, Chen S, et al. Inorganic Chemistry Frontiers, 2022, 9(21), 5507. 18 Wang R, Yang Y, Xu X, et al. Inorganic Chemistry Frontiers, 2023, 10(4), 1348. 19 Xie J, Qu H, Lei F, et al. Journal of Materials Chemistry A, 2018, 6(33), 16121. 20 Yu L, Zhou H, Sun J, et al. Energy & Environmental Science, 2017, 10(8), 1820. 21 Niu S, Jiang W J, Tang T, et al. Advanced Functional Materials, 2019, 29(36), 1902180. 22 Liu X, Gong M, Deng S, et al. Advanced Functional Materials, 2021, 31(11), 2009032. 23 Hao S, Chen L, Yu C, et al. ACS Energy Letters, 2019, 4(4), 952. 24 Hao S, Zheng G, Gao S, et al. ACS Sustainable Chemistry & Engineering, 2019, 7(17), 14361. 25 Zhu W X, Zhang T S, Zhang Y, et al. Applied Catalysis B, Environmental, 2019, 244, 844. 26 Liu X, Gong M, Xiao D, et al. Small, 2020, 16(24), 2000663. 27 Zhao W, Xu H, Luan H, et al. Advanced Energy Materials, 2022, 12(2), 2102372. 28 Liu Y, Liang X, Gu L, et al. Nature Communication, 2018, 9(1), 2609. 29 Wang J, Ji L, Zuo S, et al. Advanced Energy Materials, 2017, 7(14), 1700107. 30 Yamashita T, Hayes P. Applied surface science, 2008, 254(8), 2441. 31 Biesinger M C, Payne B P, Grosvenor A P, et al. Applied Surface Science, 2011, 257(7), 2717. 32 Wang Y, Xie C, Zhang Z, et al. Advanced Functional Materials, 2018, 28(4), 1703363. 33 Cui C, Liu Y, Mehdi S, et al. Applied Catalysis B, Environmental, 2020, 265, 118612. 34 Huang J, Han J, Wang R, et al. ACS Energy Letters, 2018, 3(7), 1698. 35 Shinagawa T, Garcia-Esparza A T, Takanabe K. Scientific Reports, 2015, 5(1), 13801. 36 Gao Y, Li H, Yang G. Crystal Growth & Design, 2015, 15(9), 4475. |
|
|
|