INORGANIC MATERIALS AND CERAMIC MATRIX COMPOSITES |
|
|
|
|
|
Efficient Wide-spectrum-driven N2 Photofixation over g-C3N4/Cu2(OH)2CO3 Heterojunction Doped of Nitrogen Vacancies via Self-sacrificial Method |
LIANG Hongyu*, WANG Bin, LU Guang, SHANG Liyan*
|
School of Environmental and Safety Engineering,Liaoning Petrochemical University,Fushun 113001,Liaoning,China |
|
|
Abstract In this study,N vacancies-doped g-C3N4/Cu2(OH)2CO3 (VCN/Cu) heterojunction catalyst with superior wide-spectrum-driven (from VIS to NIR) N2 photofixation ability was synthesized via in-situ self-sacrificial method.The experimental results show that the charge transfer between g-C3N4 and Cu2(OH)2CO3 follows the ‘Z-scheme’ mechanism.N vacancies-induced defect states might act as the initial charge carriers acceptor to reduce electron/hole recombination,and also promote the interfacial charge transfer from N vacancies of excited g-C3N4 to N2 and O2molecules absorbed and pre-activated by N vacancies,leading more active sites.The nitrogen photofixation performance of as-prepared catalyst is deeply influenced by the O2content in reaction system with methanol as hole scavenger.The as-prepared VCN/Cu heterojunction catalyst demonstrates the ammonium ion production rate as high as 14.52 mg·L-1·h-1·g-1under the atmosphere of 50% O2 and 50% N2,which is 2.7 times higher than that under pure nitrogen atmosphere,and a ‘three-channel’ ammonia production mechanism is proposed.This study might open up a new vista to nitrogen fixation through the less energy-demanding green photocatalytic process.
|
Published: 25 August 2024
Online: 2024-09-10
|
|
Fund:Natural Science Foundation of Liaoning Provincial Science and Technology Department(2019-ZD-0063). |
|
|
1 Rafiqul I, Weber C, Lehmann B, et al. Energy, 2005, 30(13), 2487. 2 Schrauzer G N, Guth T D. Journal of the American Chemical Society, 1977, 99(6), 7189. 3 Horrocks S M. Technology & Culture, 2002, 43(3), 622. 4 Zhu D, Zhang L, Ruther R E, et al. Nature Materials. 2013, 12(9), 836. 5 Shilov A E. Russian Chemical Bulletin, 2003, 52(12), 2555. 6 Bazhenova T A, Shilov A E. Coordination Chemistry Reviews. 1995, 144(1), 69. 7 Shilov A E. Metal complexes in biomimetic chemical reactions, CRC Press, US, 1997, pp.73. 8 Shilov A E. Electron transfer in chemistry, Wiley VCH Press, GER, 2001, pp.878. 9 Liang Y T, Vijayan B K, Gray K A, et al. Nano Letters, 2011, 11(7), 2865. 10 Walter M G, Warren E L, McKone J R, et al. Chemical Reviews, 2010, 110(3), 6446. 11 Britto P J, Santhanam K S V, Rubio A, et al. Advanced Materials, 1999, 11(2), 154. 12 Mao Y, Wu M, Li G, et al. Reaction Kinetics, Mechanisms and Catalysis, 2018, 125(2), 1179 13 Dong G H, Ho W K, Wang C. Journal of Materials Chemistry A, 2015, 3(2), 23435. 14 Xiang H B, Gou J J, Wu L, et al. Materials Reports, 2022, 36(6), 21030152 (in Chinese). 向寒宾, 苟浇浇, 吴琳, 等. 材料导报, 2022, 36(6), 21030152. 15 Liang Z, Xue Y, Wang X. Materials Today Nano, 2022, 18, 100204. 16 Prabhakar V S V, Kumar R P A, Jaesool S, et al. ACS Omega, 2018, 3(7), 7587. 17 He Z K, Fu J W, Cheng B, et al. Applied Catalysis B: Environmental, 2017, 205(5), 104. 18 Chen D, Wang X N, Zhang X Q, et al. International Journal of Hydrogen Energy, 2020, 45(46), 24697. 19 Li S J, Chen X, Hu S Z, et al. RSC Advances, 2016, 6(2), 45931. 20 Liang H Y, Zou H, Hu S Z. New Journal of Chemistry, 2017, 41(17), 8920. 21 Zhu J, Ling M, Ma R D, et al. Materials Reports, 2024, 38(11), 23010115 (in Chinese). 朱杰, 凌敏, 马润东, 等. 材料导报, 2024, 38(11), 23010115. 22 Hao X, Dai D S, Li S S. Dalton Transactions, 2018, 47(2), 348. 23 Wang X C, Maeda K A, Thomas K, et al. Nature Materials, 2009, 8(1), 76. 24 Ge L, Han C. Applied Catalysis B:Environmental, 2012, 117 (1), 268. 25 Zhang Y, Liu J, Wu G, et al. Nanoscale, 2012, 4(17), 5300. 26 Niu P, Zhang L, Liu G, et al. Advanced Functional Materials, 2012, 22(22), 4763. 27 Mohapatra P K, Singh N R. Photosynthesis Research, 2015, 123(1), 105. 28 Liu X, Han X, Liang Z, et al. Journal of Colloid and Interface Science, 2022, 605(1), 320. 29 Xy A, Wza B, Jha B, et al. Applied Catalysis A:General, 2020, 601(7), 601. 30 Xiao C, Zhang L, Wang K, et al. Nitrogen fixation, 2018(12), 239. |
|
|
|