POLYMERS AND POLYMER MATRIX COMPOSITES |
|
|
|
|
|
Polymer-based Nanoreactors in Catalytic Chemistry |
QIU Jiaqi1, MIN Yuting1, CHEN Tao1,2,*
|
1 Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China 2 Key Laboratory of Green Cleaning Technology & Detergent of Zhejiang Province, Lishui 323000, Zhejiang, China |
|
|
Abstract The polymer-based nanoreactor has the characteristics of easy preparation, good dispersion and facile modulation of molecular structure. The introduction of homogeneous catalyst into polymer-based nanoreactor can not only realize the organic combination of homogeneous catalysis and heterogeneous catalysis, but also effectively utilize the nanoreactor's substrate concentration effect, confinement effect, etc. Polymer-based nanoreactors have been widely used in many fields, such as separation, sensing, electronics, drug delivery, catalysis, etc. In the field of catalysis, the polymeric nanoreactor simulates the microenvironment of enzyme possessing excellent catalytic activity in water. Besides, polymer-based nanoreactor is recyclable and can be used for cascade catalysis. Therefore, researchers around the world have designed a large number of catalytic nanoreactors with different structures, including nanoreactors based on amphiphilic polymers, crosslinked polymers, single-chain particles and other types of polymers. These catalytic nanoreactors displayed excellent catalytic performance. This paper reviews the fabrication and catalytic application of such polymer-based nanoreactors.
|
Published:
Online: 2023-01-03
|
|
Fund:National Natural Science Foundation of China(52273216). |
|
|
1 Han D F, Yang Q H, Li C. Chinese Journal of Catalysis, 2008, 29(9), 789(in Chinese). 韩涤非, 杨启华, 李灿. 催化学报, 2008, 29(9), 789. 2 Georgakilas V, Perman J A, Tucek J, et al. Chemical Reviews, 2015, 115(11), 4744. 3 Moughton A O, Hillmyer M A, Lodge T P, Macromolecules, 2011, 45(1), 2. 4 Altava B, Burguete M I, Garcia-Verdugo E, et al. Chemical Society Reviews, 2018, 47(8), 2722. 5 Gaitzsch J, Huang X, Voit B. Chemical Reviews, 2016, 116(3), 1053. 6 Zhang J, Zhang M, Tang K, et al. Small, 2014, 10(1), 32. 7 Kitanosono T, Masuda K, Xu P, et al. Chemical Reviews, 2018, 118(2), 679. 8 Zhou J, Wu R, Chen Y, et al. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 615, 126271. 9 Larrañaga A, Lomora M, Sarasua J R, et al. Progress in Materials Science, 2017, 90, 325. 10 Pick H, Alves A C, Vogel H. Chemical Reviews, 2018, 118(18), 8598. 11 Wang P, Zhang J L, Qing G Y. Materials Reports A:Review Papers, 2015, 29(5), 1(in Chinese). 王鹏, 张静丽, 卿光焱. 材料导报:综述篇, 2015, 29(5), 1. 12 Liu Y, Wang J, Zhang M, et al. ACS Nano, 2020, 14(10), 12491. 13 Varlas S, Lawrenson S B, Arkinstall L A, et al. Progress in Polymer Science, 2020, 107. 14 Zhong K L, Yin B Z, Jing L Y. Chinese Polymer Bulletin, 2009(2), 48 (in Chinese). 钟克利, 尹炳柱, 金龙一. 高分子通报, 2009(2), 48. 15 Patterson J P, Cotanda P, Kelley E G, et al. Polymer Chemistry, 2013, 4(6), 2033. 16 Moore B L, Lu A, Longbottom D A, et al. Polymer Chemistry, 2013, 4(7), 2304. 17 Zhang Y, Tan R, Zhao G, et al. Catalysis Science & Technology, 2016, 6(2), 488. 18 You S S, Yang W T, Yin M Z. Progress in Chemistry, 2012, 24(11), 2198 (in Chinese). 尤树森, 杨万泰, 尹梅贞. 化学进展, 2012, 24(11), 2198. 19 Zhang Y, Tan R, Zhao G, et al. Journal of Catalysis, 2016, 335, 62. 20 Gao M, Tan R, Hao P, et al. RSC Advances, 2017, 7(86), 54570. 21 Tang Z, Wang W, Pi Y, et al. ACS Sustainable Chemistry & Engineering, 2019, 7(21), 17967. 22 Ge Z, Xie D, Chen D, et al. Macromolecules, 2007, 40(10), 3538. 23 Cotanda P, Lu A, Patterson J P, et al. Macromolecules, 2012, 45(5), 2377. 24 Lu A, Cotanda P, Patterson J P, et al. Chemical Communications, 2012, 48(78), 9699. 25 Zayas H A, Lu A, Valade D, et al. ACS Macro Letters, 2013, 2(4), 327. 26 Lestini E, Blackman L D, Zammit C M, et al. Polymer Chemistry, 2018, 9(7), 820. 27 Chen T, Xu Z, Zhou L, et al. Molecular Catalysis, 2019, 474, 110422. 28 Qiu J, Meng F, Wang M, et al. Polymer, 2021, 222, 123660. 29 Zhou L, Qiu J, Wang M, et al. Journal of Inorganic and Organometallic Polymers and Materials, 2020, 30, 4569. 30 Le D, Dilger M, Pertici V, et al. Angewandte Chemie-International Edition, 2019, 58(14), 4725. 31 Wang M, Xu Z, Shi Y, et al. Journal of Organic Chemistry, 2021, 86(12), 8027. 32 Crooks R M, Zhao M, Sun L, et al. Accounts of Chemical Research, 2001, 34(3), 181. 33 Helms B, Liang C O, Hawker C J, et al. Macromolecules, 2005, 38(13), 5411. 34 Wang Z J, Deng G J, Li Y, et al. Organic Letters, 2007, 9(7), 1243. 35 He Y M, Feng Y, Fan Q H. Accounts of Chemical Research, 2014, 47(10), 2894. 36 Helms B, Fréchet J M J. Advanced Synthesis & Catalysis, 2006, 348(10-11), 1125. 37 Javor S, Delort E, Darbre T, et al. Journal of the American Chemical Society, 2007, 129(43), 13238. 38 Madhavan N, Jones C W, Weck M. Accounts of Chemical Research, 2008, 41(9), 1153. 39 Peng M, Chen Y, Tan R, et al. RSC Advances, 2013, 3(43), 20684. 40 Chen Y, Tan R, Zheng W, et al. Catalysis Science & Technology, 2014, 4(11), 4084. 41 Saberi D, Hashemi H, Ghanaatzadeh N, et al. Applied Organometallic Chemistry, 2020, 34(4) 42 Zheng K, Ren J, He J. Macromolecules, 2019, 52(17), 6780. 43 Helms B, Guillaudeu S J, Xie Y, et al. Angewandte Chemie-International Edition, 2005, 44(39), 6384. 44 Dichtel W R, Baek K Y, Fréchet J M J, et al. Journal of Polymer Science Part A: Polymer Chemistry, 2006, 44(17), 4939. 45 Chi Y, Scroggins S T, Frechet J M. Journal of the American Chemical Society, 2008, 130(20), 6322. 46 Rodionov V, Gao H, Scroggins S, et al. Journal of the American Chemical Society, 2010, 132(8), 2570. 47 Zoppe J O, Ataman N C, Mocny P, et al. Chemical Reviews, 2017, 117(3), 1105. 48 Kuepfert M, Ahmed E, Weck M. Macromolecules, 2021, 54, 8, 3845. 49 Womble C T, Kuepfert M, Weck M. Macromolecular Rapid Communications, 2019, 40(1), e1800580. 50 Hoyt C B, Lee L C, Cohen A E, et al. ChemCatChem, 2017, 9(1), 137. 51 Lu J, Liang L, Weck M. Journal of Molecular Catalysis A: Chemical, 2016, 417, 122. 52 Liu Y, Wang Y, Wang Y, et al. Journal of the American Chemical Society, 2011, 133(36), 14260. 53 Lee L C, Lu J, Weck M, et al. ACS Catalysis, 2016, 6(2), 784. 54 Lu J, Dimroth J, Weck M. Journal of the American Chemical Society, 2015, 137(40), 12984. 55 Kuepfert M, Cohen A E, Cullen O, et al. Chemistry, 2018, 24(70), 18648. 56 Qu P, Kuepfert M, Jockusch S, et al. ACS Catalysis, 2019, 9(4), 2701. 57 Qu P, Kuepfert M, Hashmi M, et al. Journal of the American Chemical Society, 2021, 143(12), 4705. 58 Poli R, Chen S, Zhang X W, et al. ACS Symposium Series, 2015, 1188, 203. 59 Cardozo A F, Julcour C, Barthe L, et al. Journal of Catalysis, 2015, 324, 1. 60 Lobry E, Cardozo A F, Barthe L, et al. Journal of Catalysis, 2016, 342, 164. 61 Zhang X, Cardozo A F, Chen S, et al. Chemistry, 2014, 20(47), 15505. 62 Chen S, Cardozo A F, Julcour C, et al. Polymer, 2015, 72, 327. 63 Joumaa A, Gayet F, Garcia-Suarez E J, et al. Polymers, 2020, 12(5), 1107. 64 Wang H, Vendrame L, Fliedel C, et al. Chemistry, 2021, 27(16), 5205. 65 Lu A, Moatsou D, Longbottom D A, et al. Chemical Science, 2013, 4(3), 965. 66 Lu A, Moatsou D, Hands-Portman I, et al. ACS Macro Letters, 2014, 3(12), 1235. 67 Moore B L, Moatsou D, Lu A, et al. Polymer Chemistry, 2014, 5(10), 3487. 68 Hanlon A M, Lyon C K, Berda E B. Macromolecules, 2015, 49(1), 2. 69 Fisher T, Spann S, An Q, et al. Chemical Science, 2018, 9, 4696. 70 Thanneeru S, Nganga J K, Amin A S, et al. ChemCatChem, 2017, 9(7), 1157. 71 Garmendia S, Dove A P, Taton D, et al. Polymer Chemistry, 2018, 9(43), 5286. 72 Garmendia S, Dove A P, Taton D, et al. Polymer Chemistry, 2019, 10(18), 2282. 73 Chen T, Zhang S, Hua L, et al. Macromolecular Research, 2019, 27(10), 931. 74 Zhang Y, Tan R, Gao M, et al. Green Chemistry, 2017, 19(4), 1182. 75 Zhang Y, Wang W, Fu W, et al. Chemical Communications, 2018, 54(68), 9430. 76 Wang W, Li C, Pi Y, et al. Catalysis Science & Technology, 2019, 9(20), 5626. 77 Wang W, Wang J, Li S, et al. Green Chemistry, 2020, 22(14), 4645. 78 Huerta E, Stals P J, Meijer E W, et al. Angewandte Chemie-International Edition, 2013, 52(10), 2906. 79 Rothfuss H, Knofel N D, Roesky P W, et al. Journal of the American Chemical Society, 2018, 140(18), 5875. 80 Mavila S, Rozenberg I, Lemcoff N G. Chemical Science, 2014, 5(11), 4196. 81 Artar M, Terashima T, Sawamoto M, et al. Journal of Polymer Science Part A: Polymer Chemistry, 2014, 52(1), 12. 82 Hosono N, Palmans A R, Meijer E W. Chemical Communications, 2014, 50(59), 7990. 83 Terashima T, Mes T, De Greef T F, et al. Journal of the American Chemical Society, 2011, 133(13), 4742. 84 Perez-Baena I, Barroso-Bujans F, Gasser U, et al. ACS Macro Letters, 2013, 2(9), 775. 85 Sanchez-Sanchez A, Arbe A, Colmenero J, et al. ACS Macro Letters, 2014, 3(5), 439. 86 Rubio-Cervilla J, Gonzalez E, Pomposo J A, Nanomaterials, 2017, 7(10), 341. 87 Knofel N D, Rothfuss H, Willenbacher J, et al. Angewandte Chemie-International Edition, 2017, 56(18), 4950. 88 Bai Y, Feng X, Xing H, et al. Journal of the American Chemical Society, 2016, 138(35), 11077. 89 Azuma Y, Terashima T, Sawamoto M. ACS Macro Letters, 2017, 6(8), 830. 90 Lambert R, Wirotius A L, Taton D. ACS Macro Letters, 2017, 6(5), 489. 91 Scholten J D, Leal B C, Dupont J. ACS Catalysis, 2012, 2(1), 184. 92 Montolio S, Vicent C, Aseyev V, et al. ACS Catalysis, 2016, 6(10), 7230. 93 Das S, Heasman P, Ben T, et al. Chemical Reviews, 2017, 117(3), 1515. 94 Ko J H, Kang N, Park N, et al. ACS Macro Letters, 2015, 4(7), 669. 95 Yoo J, Park N, Park J H, et al. ACS Catalysis, 2014, 5(1), 350. 96 Sinner F, Buchmeiser M R. Macromolecules, 2000, 33(16), 5777. 97 Xu Y, Wang T, He Z, et al. Polymer Chemistry, 2018, 9(29), 4017. 98 Shi B, Yu H, Gao S, et al. Microporous and Mesoporous Materials, 2020, 294, 109890. 99 Xu Y, Wang T, Shi B, et al. Polymer Chemistry, 2019, 10(12), 1489. 100 Liu Y, Zhang L, Gao S, et al. New Journal of Chemistry, 2020, 44(16), 6661. 101 Xu Y, Wang T, He Z, et al. Macromolecules, 2017, 50(24), 9626. 102 He Z, Zhou M, Wang T, et al. ACS Applied Materials & Interfaces, 2017, 9(40), 35209. 103 Zhou M, Wang T, He Z, et al. ACS Sustainable Chemistry & Engineering, 2019, 7(3), 2924. 104 Xiong L, Zhang H, He Z, et al. New Journal of Chemistry, 2018, 42(2), 1368. 105 Meng G, Gao S, Liu Y, et al. New Journal of Chemistry, 2019, 43(5), 2269. 106 Yu W, Zhou M, Wang T, et al. Organic Letters, 2017, 19(21), 5776. 107 Longstreet A R, McQuade D T. Accounts of Chemical Research, 2013, 46(2), 327. 108 Poe S L, Kobaslija M, McQuade D T. Journal of the American Chemical Society, 2006, 128(49), 15586. 109 Poe S L, Kobaslija M, McQuade D T. Journal of the American Chemical Society, 2007, 129(29), 9216. 110 Mao Z, Song M, Zhong Y, et al. Chemical Engineering Journal, 2014, 240, 116. 111 Price K E, Mason B P, Bogdan A R, et al. Journal of the American Chemical Society, 2006, 128(32), 10376. 112 Mason B P, Bogdan A R, Goswami A, et al. Organic Letters, 2007, 9(17), 3449. 113 Shiraishi Y, Kimata Y, Koizumi H, et al. Langmuir, 2008, 24(17), 9832. 114 Kong Y, Tan R, Zhao L, et al. Green Chemistry, 2013, 15(9), 2422. 115 Zhang M, Tang Z, Fu W, et al. Chemical Communications, 2019, 55(5), 592. 116 Jiang X, Wang B, Li C Y, et al. Journal of Polymer Science Part A: Polymer Chemistry, 2009, 47(11), 2853. 117 Jia Z, Wang K, Tan B, et al. ACS Catalysis, 2017, 7(5), 3693. 118 Mohan A, Rout L, Thomas A M, et al. RSC Advances, 2020, 10(47), 28193. |
|
|
|