Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (20): 6-10    https://doi.org/10.11896/j.issn.1005-023X.2017.020.002
  材料研究 |
石墨烯-聚(苯乙烯-co-丙烯酸丁酯)复合材料的力学及形状回复性能*
张可可, 杨帅, 张亚楠, 王雅琦, 曾庆祥, 刘芳颖, 张威, 张大伟
东北林业大学材料科学与工程学院,哈尔滨 150040
Study on the Mechanical Properties and Shape Recovery Capability of Graphene-Poly(styrene-co-butyl acrylate) Composites
ZHANG Keke, YANG Shuai, ZHANG Yanan, WANG Yaqi, ZENG Qingxiang, LIU Fangying, ZHANG Wei, ZHANG Dawei
Institute of Materials Science and Engineering, Northeast Forestry University, Harbin 150040
下载:  全 文 ( PDF ) ( 1581KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用Hummers氧化法制备氧化石墨烯,再以水合肼为还原剂制得石墨烯。用异氰酸酯处理石墨烯以对其进行改性。以苯乙烯和丙烯酸丁酯作为形状记忆聚合物的共聚单体,将石墨烯和经异氰酸酯处理的石墨烯分别加入单体溶液中,采用自由基聚合的方法获得了不同石墨烯含量的石墨烯-聚(苯乙烯-co-丙烯酸丁酯)形状记忆复合材料。DMA、力学性能测试表明,掺杂石墨烯或经异氰酸酯处理的石墨烯后,形状记忆聚合物的储能模量和玻璃化转变温度均降低;随石墨烯含量的增加,复合材料的拉伸模量降低;在相同温度下,用经异氰酸酯处理的石墨烯制得的复合材料的形状回复能力普遍大于用相同含量的未处理石墨烯制得的复合材料。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张可可
杨帅
张亚楠
王雅琦
曾庆祥
刘芳颖
张威
张大伟
关键词:  石墨烯  苯乙烯  丙烯酸丁酯  共聚物  形状记忆复合材料  力学性能  形状回复    
Abstract: The present work aims at the fabrication and mechanical & shape recovery performances of a graphene-poly(styrene-co-butyl acrylate) composite. First, the graphene oxide was prepared by Hummers method, and then reduced by using hydrazine hydrate to prepare graphene. Secondly, the graphene and isocyanate-treated graphene were separately added into a mixed solution containing styrene and butyl acrylate which served as monomers, and a free radical polymerization process was employed to fabricate a series of shape memory composites (graphene-poly(styrene-co-butyl acrylate)) differed in graphene content. We then characterized and estimated the shape memory composites’ performances by applying DMA test and mechanical properties tests, and the results indicated that both the additions of graphene and isocyanate-treated graphene contribute to the declines of both storage modulus and glass transition temperature of the shape memory composites. An inverse correlation between graphene content and tensile modulus of the composites was also observed. At the same temperature, the shape recovery capability of the composites fabricated with isocyanate-treated graphene is generally better than that with untreated graphene (under equal graphene content).
Key words:  graphene    styrene    butyl acrylate    copolymer    shape memory composite    mechanical property    shape recovery
               出版日期:  2017-10-25      发布日期:  2018-05-05
ZTFLH:  TB332  
基金资助: *中央高校基本科研业务费专项资金(2572015CB02);黑龙江省自然科学基金(E201351);黑龙江省博士后基金(LBH-Z13010);东北林业大学大学生科研训练项目(KY2015010)
作者简介:  张可可:女,1992年生,硕士研究生,主要研究方向为石墨烯及壳聚糖材料 E-mail:1053907043@qq.com 张大伟:通讯作者,男,1975年生,博士,副教授,主要从事生物质材料及其复合材料的研究 E-mail:zhangdawei@nefu.edu.cn
引用本文:    
张可可, 杨帅, 张亚楠, 王雅琦, 曾庆祥, 刘芳颖, 张威, 张大伟. 石墨烯-聚(苯乙烯-co-丙烯酸丁酯)复合材料的力学及形状回复性能*[J]. 《材料导报》期刊社, 2017, 31(20): 6-10.
ZHANG Keke, YANG Shuai, ZHANG Yanan, WANG Yaqi, ZENG Qingxiang, LIU Fangying, ZHANG Wei, ZHANG Dawei. Study on the Mechanical Properties and Shape Recovery Capability of Graphene-Poly(styrene-co-butyl acrylate) Composites. Materials Reports, 2017, 31(20): 6-10.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.020.002  或          http://www.mater-rep.com/CN/Y2017/V31/I20/6
1 Kumpfer J R, Rowan S J. Thermo-, photo-, and chemo-responsive shape-memory properties from photo-cross-linked metallo-supramolecular polymers[J]. J Am Chem Soc, 2011,133(32):12866.
2 Schmidt A M. Electromagnetic activation of shape memory polymer networks containing magnetic nanoparticles[J]. Macromol Rapid Commun, 2006,27(14):1168.
3 Fei G X, Li G, Wu L S, et al. A spatially and temporally controlled shape memory process for electrically conductive polymer-carbon nanotube composites[J]. Soft Matter, 2012,8(19):5123.
4 Kumar U K, Kratz K, Heuchel M, et al. Shape-memory nanocomposites with magnetically adjustable apparent switching temperatures[J]. Adv Mater, 2011,23(36):4157.
5 Luo X, Mather P T. Conductive shape memory nanocomposites for high speed electrical actuation[J]. Soft Matter, 2010,6(10):2146.
6 Correia C O, Caridade S G, Mano J F. Chitosan membranes exhibiting shape memory capability by the action of controlled hydration[J]. Polymers, 2014,6(4):1178.
7 Leng J S, Lv H B, Liu Y J, et al. Shape memory polymers-A class of novel smart material[J]. MBS Bull, 2009,34(11):848.
8 Cai Y, Jiang J S, Liu Z W, et al. Magnetically-sensitive shape me-mory polyurethane composites crosslinked with multi-walled carbon nanotubes[J]. Composites Part A, 2013,53:16.
9 Yang B, Huang W M, Li C, et al. Effect of moisture on the thermomechanical properties of a polyurethane shape memory polymer[J]. Polymer, 2006,47(4):1348.
10Chen S J, Hu J L, Zhuo H T, et al. Two-way shape memory effect in polymer laminates[J]. Mater Lett, 2008,62(25):4088.
11Du H Y, Zhang J H. Shape memory polymer based on chemically cross-linked poly(vinyl alcohol) containing a small number of water molecules[J]. Colloid Polym Sci, 2010,288(1):15.
12Du H Y, Zhang J H. Solvent induced shape recovery of shape me-mory polymer based on chemically cross-linked poly(vinyl alcohol)[J]. Soft Matter, 2010,6(14):3370.
13Zhang D W, Liu Y J, Yu K, et al. Influence of cross-linking agent on thermomechanical properties and shape memory effect of styrene shape memory polymer[J]. Intell Mater Syst Struct, 2011,22(18):2147.
14Gómez-Navarro C, Burghard M, Kem K. Elastic properties of chemically derived single graphene sheets[J]. Nano Lett, 2008,8(7):2045.
15Ghosh S, Bao W, Nika D L, et al. Dimensional crossover of thermal transport in few-layer graphene[J]. Nat Mater, 2010,9(7):555.
16Jang B Z, Liu C, Neff D, et al. Graphene surface-enabled lithium ion-exchanging cells: Next-generation high-power energy storage devices[J]. Nano Lett, 2011,11(9):3785.
17Teweldebrhan D, Balandin A A. Modification of graphene properties due to electron-beam irradiation[J]. Appl Phys Lett, 2009,94(1):013101.
18Hummers W S, Offeman R E. Preparation of graphitic oxide[J]. J Am Chem Soc, 1958,80(6):1339.
19Stankovich S, Dikin D A, Piner R D, et al. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide[J].Carbon,2007,45(7):1558.
20Chen Y B, Chen Y S, Ouyang Q,et al. Study on thermal properties of PAN/graphene oxide nanocomposites[J]. China Synth Fiber Ind, 2012,35(6):1(in Chinese).
陈宜波, 陈友汜, 欧阳琴, 等. PAN/氧化石墨烯纳米复合材料的热性能研究[J]. 合成纤维工业, 2012, 35(6):1.
[1] 马依拉·克然木, 李首城, 胡天浩, 崔静洁. 石墨烯的电化学生物传感器研究进展[J]. 材料导报, 2019, 33(z1): 57-61.
[2] 丁晓飞, 范同祥. 石墨烯增强铜基复合材料的研究进展[J]. 材料导报, 2019, 33(z1): 67-73.
[3] 刘印, 王昌, 于振涛, 盖晋阳, 曾德鹏. 医用镁合金的力学性能研究进展[J]. 材料导报, 2019, 33(z1): 288-292.
[4] 张长亮, 卢一平. 氮元素对Ti2ZrHfV0.5Mo0.2高熵合金组织及力学性能的影响[J]. 材料导报, 2019, 33(z1): 329-331.
[5] 晁代义, 徐仁根, 孙有政, 赵巍, 吕正风, 程仁策, 邵文柱. 850 ℃时效处理对2205双相不锈钢组织与力学性能的影响[J]. 材料导报, 2019, 33(z1): 369-372.
[6] 柴凡超, 常树全, 王国辉, 姚初请, 戴耀东. 辐射改性对铅/铜高分子辐射屏蔽材料性能的影响[J]. 材料导报, 2019, 33(z1): 444-447.
[7] 任秀秀, 朱一举, 赵省向, 韩仲熙, 姚李娜. 四种含能晶体微观力学性能与摩擦性能的关系[J]. 材料导报, 2019, 33(z1): 448-452.
[8] 周春波, 张有智, 张岳, 王煊军. 聚乙烯基石墨烯复合多孔球形材料的制备及性能表征[J]. 材料导报, 2019, 33(z1): 453-456.
[9] 薛晓武, 王新闻, 刘红波, 卿宁. 水性聚碳酸酯型聚氨酯的制备及性能[J]. 材料导报, 2019, 33(z1): 488-490.
[10] 路小彬. 基于嵌段共聚物的硅表面聚合物刷点阵组装[J]. 材料导报, 2019, 33(z1): 505-509.
[11] 杨康, 赵为平, 赵立杰, 梁宇, 薛继佳, 梅莉. 固化湿度对复合材料层合板力学性能的影响与分析[J]. 材料导报, 2019, 33(z1): 223-224.
[12] 平学龙, 符寒光, 孙淑婷. 激光熔覆制备硬质颗粒增强镍基合金复合涂层的研究进展[J]. 材料导报, 2019, 33(9): 1535-1540.
[13] 薛翠真, 申爱琴, 郭寅川. 基于孔结构参数的掺CWCPM混凝土抗压强度预测模型的建立[J]. 材料导报, 2019, 33(8): 1348-1353.
[14] 陈卫丰, 吕果, 陶华超, 陈少娜, 李德江, 代忠旭. 石墨烯量子点的制备及在生物传感器中的应用研究进展[J]. 材料导报, 2019, 33(7): 1156-1162.
[15] 孙娅, 吴长军, 刘亚, 彭浩平, 苏旭平. 合金元素对CoCrFeNi基高熵合金相组成和力学性能影响的研究现状[J]. 材料导报, 2019, 33(7): 1169-1173.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed