Please wait a minute...
材料导报  2024, Vol. 38 Issue (1): 22050280-10    https://doi.org/10.11896/cldb.22050280
  高分子与聚合物基复合材料 |
自修复聚氨酯材料的研究进展
刘亚豪1,2, 王源升1, 杨雪3,4, 黄威1,2, 李科5, 王轩1,*
1 海军工程大学基础部,武汉 430033
2 海军工程大学舰船与海洋学院,武汉 430033
3 海军工程大学振动与噪声研究所,武汉 430033
4 海军工程大学船舶振动噪声重点实验室,武汉 430033
5 92941部队,辽宁 葫芦岛 125001
Research Progress of Self-healing Polyurethane Materials
LIU Yahao1,2, WANG Yuansheng1, YANG Xue3,4, HUANG Wei1,2, LI Ke5, WANG Xuan1,*
1 Department of Basics, Naval University of Engineering, Wuhan 430033, China
2 College of Naval Architecture and Ocean, Naval University of Engineering, Wuhan 430033, China
3 Institute of Noise & Vibration, Naval University of Engineering, Wuhan 430033, China
4 National Key Laboratory on Ship Vibration & Noise, Naval University of Engineering, Wuhan 430033, China
5 Unit 92941, Huludao 125001, Liaoning, China
下载:  全 文 ( PDF ) ( 36371KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 聚氨酯材料因具有优异的综合性能而得到了广泛应用,但是其在使用过程中不可避免地会产生微裂纹等结构破坏,而自修复技术是解决这一问题的有效方案。本文阐述了非本征型和本征型自修复的机理,重点综述了本征型自修复材料的设计方法和研究进展,讨论了不同设计方法对材料自修复性能、力学性能等的影响,最后针对自修复材料自修复性能和力学性能的平衡问题,探讨了复合型自修复体系的可行性、设计思路和最新进展,提出了复合型自修复材料是今后的一大发展趋势,并展望了自修复材料面临的挑战和发展方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘亚豪
王源升
杨雪
黄威
李科
王轩
关键词:  自修复  聚氨酯  可逆动态键  力学性能  石墨烯    
Abstract: Owing to their excellent comprehensive properties, polyurethane materials have been extensively used in commercial applications. However, such materials inevitably undergo structural damage such as microcracks during their service life. Recently, self-healing technology has been proposed as a feasible solution to this problem. Therefore, in this paper, the mechanisms of extrinsic and intrinsic self-healing materials are reviewed by focusing on the latest research progress and methods for designing intrinsic self-healing materials. The influences of different design methods on the self-healing and mechanical properties of the materials are discussed.Subsequently, aiming to address the difficulty in achieving a balance between self-healing and the mechanical properties of self-healing materials, composite self-healing materials have been proposed as a major development trend of the future, and therefore, the feasibility, design concepts, and latest research progress of such composite self-hea-ling systems are discussed and analyzed. Finally, current challenges and future development directions are summarized.
Key words:  self-healing    polyurethane    reversible dynamic bond    mechanical property    graphene
发布日期:  2024-01-16
ZTFLH:  TQ323.8  
基金资助: 十三五装备预研领域基金(6140004040101)
通讯作者:  王源升,海军工程大学教授、博士研究生导师。1982年、1985年于海军工程大学分别获学士和硕士学位,1995年于四川大学获博士学位。现为海军工程大学教授,长期从事高分子材料及其应用研究工作,曾任高分子材料工程国家重点实验室主任等。发表SCI学术论文100余篇,先后获国家发明三等奖1项、军队科技进步一等奖3项等。入选国家有突出贡献的中青年专家,国家“百千万人才工程”第一、二层次人选等。
王轩,海军工程大学副教授、硕士研究生导师。2008年于湖南大学获得理学学士学位,2013年于海军工程大学获得硕士学位。目前从事材料科学与工程、化学、高分子材料教学研究工作,发表SCI学术论文10余篇。1069755331@qq.com   
作者简介:  刘亚豪,2015年9月、2021年12月于陆军工程大学分别获得工学学士学位和硕士学位。现为海军工程大学舰船与海洋学院博士研究生,在王源升教授和王轩副教授的指导下进行研究。目前主要研究领域为聚氨酯材料。
引用本文:    
刘亚豪, 王源升, 杨雪, 黄威, 李科, 王轩. 自修复聚氨酯材料的研究进展[J]. 材料导报, 2024, 38(1): 22050280-10.
LIU Yahao, WANG Yuansheng, YANG Xue, HUANG Wei, LI Ke, WANG Xuan. Research Progress of Self-healing Polyurethane Materials. Materials Reports, 2024, 38(1): 22050280-10.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.22050280  或          https://www.mater-rep.com/CN/Y2024/V38/I1/22050280
1 Qin R. High damping polyurethane elastomer withcontrollable wide temperature range based on dynamiccovalent bond and dangling chain synergy. Ph. D. Thesis, South China University of Technology, China, 2020 (in Chinese).
秦锐. 基于动态共价键和悬挂链协同作用的可控宽温域高阻尼聚氨酯弹性体. 博士学位论文, 华南理工大学, 2020.
2 Gu M, Luo S K, Zhou Q M. Chemical Propellants & Polymeric Materials, 2011, 9(1), 46 (in Chinese).
顾远, 罗世凯, 周秋明. 化学推进剂与高分子材料, 2011, 9(1), 46.
3 Liu C, Xue X, Yin Q, et al. Fine Chemicals, 2022, 39(3), 454 (in Chinese).
刘超, 薛新, 殷青, 等. 精细化工, 2022, 39(3), 454.
4 Mou C L, Wu J J, Zhang Z. Plastics Science and Technology, 2021, 49(11), 119(in Chinese).
牟春龙, 吴佳静, 张振. 塑料科技, 2021, 49(11), 119.
5 Sun Y M, Song H H, Li L X. Engineering Plastics Application, 2016, 44(3), 1 (in Chinese).
孙雨萌, 宋怀河, 李丽霞, 等. 工程塑料应用, 2016, 44(3), 1.
6 Jud K, Kausch H H, Williams J G. Journal of Materials Science, 1981, 16(1), 204.
7 Zhai L, Narkar A, Ahn K. Nano Today, 2020, 30, 100826.
8 Luo X, Mather P T. ACS Macro Letters, 2013, 2(2), 152.
9 Bai J, Li H, Shi Z, et al. Macromolecules, 2015, 48(11), 3539.
10 Roy C K, Guo H L, Sun T L, et al. Advanced Materials, 2015, 27(45), 7344.
11 Imbernon L, Oikonomou E K, Norvez S, et al. Polymer Chemistry, 2015, 6(23), 4271.
12 Chao W, Nan L, Ranulfo A, et al. Advanced Materials, 2018, 25(40), 5785.
13 Mao J, Zhao C, Li Y, et al. Composites Communications, 2020, 17, 22.
14 Wan T, Chen D. Progress in Organic Coating, 2018, 121, 73.
15 Nevejans S, Ballard N, Fernández M, et al. Polymer, 2019, 179, 121670.
16 Yang J, Zhang Z, Yan Y, et al. ACS Applied Materials & Interfaces, 2020, 12(11), 13239.
17 Li S N. Synthesis and application of polyurethanes containing multiple self-healing systems. Ph. D. Thesis, Suzhou University of Science and Technology, China, 2021(in Chinese).
李绍南. 含有多重自修复体系的聚氨酯合成与应用研究. 博士学位论文, 苏州科技大学, 2021.
18 Cho S H, Andersson H M, White S R, et al. Advanced Materials, 2006, 18(8), 997.
19 White S R, Sottos N R, Geubelle P H, et al. Nature, 2001, 409(6822), 794.
20 Willocq B, Odent J, Dubois P, et al. RSC Advances, 2020, 10(23), 13766.
21 Bleay S M, Loader C B, Hawyes V J, et al. Composites Part A: Applied Science and Manufacturing, 2001, 32(12), 1767.
22 Lee M W, Yoon S S, Yarin A L. ACS Applied Materials & Interfaces, 2017, 9(20), 17449.
23 Trask R S, Bond I P. Smart Materials and Structures, 2006, 15(3), 704.
24 Kim J R, Netravali A N. Composites Science and Technology, 2017, 143, 22.
25 Dong B, Ding W, Qin S, et al. Construction and Building Materials, 2018, 168, 11.
26 Zemskov S V, Jonkers H M, Vermolen F J. Journal of Intelligent Material System and Structures, 2012, 25(1), 4.
27 Toohey K S, Sottos N R, Lewis J A, et al. Nature Materials, 2007, 6(8), 581.
28 Utrera-Barrios S, Verdejo R, López-Manchado M A, et al. Materials Horizons, 2020, 7(11), 2882.
29 Jin B Y. Fabrication of Mussel-memetic polymers with self-healing and electrochemical properties. Ph. D. Thesis, Zhejiang University, China, 2020(in Chinese).
金碧玉. 仿贻贝聚合物的制备及其自修复性能和电化学性能研究. 博士学位论文, 浙江大学, 2020.
30 Zhu K, Song Q, Chen H, et al. Journal of Applied Polymer Science, 2018, 135(9), 45929.
31 Kang J, Son D, Wang G J N, et al. Advanced Materials, 2018, 30(13), 1706846.
32 Xie H, Sheng D, Zhou Y, et al. New Journal of Chemistry, 2020, 44(32), 13584.
33 Song Y, Liu Y, Qi T, et al. Angew Chemie-International Editon, 2018, 57(42), 13838.
34 Yao Y, Xu Z, Liu B, et al. Advanced Functional Materials, 2021, 31(4), 2006944.
35 Appel E A, Tibbitt M W, Greer J M, et al. ACS Macro Letters, 2015, 4(8), 848.
36 Liu X, Tang C, Han W, et al. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 529, 1016.
37 Wang Y, Wang Z, Wu K, et al. Carbohydrate Polymers, 2017, 168 112.
38 Xing R, Li S, Zhang N, et al. Biomacromolecules, 2017, 18(11), 3514.
39 Giammanco G E, Sosnofsky C T, Ostrowski A D. ACS Applied Materials & Interfaces, 2015, 7(5), 3068.
40 Hussain I, Sayed S M, Liu S, et al. European Polymer Journal, 2018, 100, 219.
41 Liu Y J, Cao W T, Ma M G, et al. ACS Applied Materials & Interfaces, 2017, 9(30), 25559.
42 Wang Z, Xie C, Yu C, et al. Macromolecular Rapid Communications, 2018, 39(6), 1700678.
43 Li C H, Wang C, Keplinger C, et al. Nature Chemistry, 2016, 8(6), 618.
44 Dong H, Snyder J F, Williams K S, et al. Biomacromolecules, 2013, 14(9), 3338.
45 Gai G, Liu L, Li C H, et al. ChemPlusChem, 2019, 84(4), 432.
46 Xu S, Sheng D, Zhou Y, et al. New Journal of Chemistry, 2020, 44(18), 7395.
47 Liu Z, Zhang L, Guan Q, et al. Advanced Functional Materials, 2019, 29(28), 1901058.
48 Xu S, Sheng D, Liu X, et al. Polymer International, 2019, 68(6), 1084.
49 Zhang Q, Niu S, Wang L, et al. Advanced Materials, 2018, 30(33), 1801435.
50 Hu Z, Liu Y, Xu X, et al. Polymer, 2019, 164, 79.
51 Park J, Murayama S, Osaki M, et al. Advanced Materials, 2020, 32(39), 2002008.
52 Wan T, Chen D. Composites Science and Technology, 2018, 168, 55.
53 Wang Z, Ren Y, Zhu Y, et al. Angewandte Chemie, 2018, 57(29), 9008.
54 Xiao L, Shi J, Wu K, et al. Reaction & Functional Polymers, 2020, 148, 104482.
55 Cheol Kim H, Na Lee J, Kim E, et al. Materials Letters, 2021, 297, 129987.
56 Yang W, Shao B, Liu T, et al. ACS Applied Materials & Interfaces, 2018, 10(9), 8245.
57 Cui W, Ji J, Cai Y F, et al. Journal of Materials Chemistry A, 2015, 3(33), 17445.
58 Tuncaboylu D C, Sari M, Oppermann W, et al. Macromolecules, 2011, 44(12), 4997.
59 Bhattacharya S, Hailstone R, Lewis C L. ACS Applied Materials & Interfaces, 2020, 12(41), 46733.
60 Hornat C C, Urban M W. Nature Communications, 2020, 11(1), 1028.
61 Rivero G, Nguyen L T, Hillewaere X K D, et al. Macromolecules, 2014, 47(6), 2010.
62 Yang Y, Davydovich D, Hornat C C, et al. Chem, 2018, 4(8), 1928.
63 Zheng N, Hou J, Xu Y, et al. ACS Macro Letters, 2017, 6(4), 326.
64 Lai Y, Kuang X, Zhu P, et al. Advanced Materials, 2018, 30(38), 1802556.
65 Otsuka H, Nagano S, Kobashi Y, et al. Chemical Communications, 2010, 46(7), 1150.
66 Deng G, Li F, Yu H, et al. ACS Macro Letters, 2012, 1(2), 275.
67 Ha Y M, Kim Y O, Ahn S, et al. European Polymer Journal, 2019, 118, 36.
68 Lei Z Q, Xiang H P, Yuan Y J, et al. Chemical Materials, 2014, 26(6), 2038.
69 Cai Y, Zou H, Zhou S, et al. ACS Applied Polymer Materials, 2020, 2(9), 3977.
70 Canadell J, Goossens H, Klumperman B. Macromolecules, 2011, 44(8), 2536.
71 Kim S M, Jeon H, Shin S H, et al. Advanced Materials, 2018, 30(1), 1705145.
72 An X, Aguirresarobe R H, Irusta L, et al. Polymer Chemistry, 2017, 8(23), 3641.
73 Fan W, Jin Y, Shi L. Polymer Chemistry, 2020, 11(34), 5463.
74 Fan W, Jin Y, Huang Y, et al. Journal of Applied Polymer Science, 2019, 136(7), 47071.
75 Du W, Jin Y, Pan J, et al. Journal of Applied Polymer Science, 2018, 135(22), 46326.
76 Ji S, Fan F, Sun C, et al. ACS Applied Materials & Interfaces, 2017, 9(38), 33169.
77 Fang Y, Du X, Jiang Y, et al. ACS Sustainable Chemistry & Enginee-ring, 2018, 6(11), 14490.
78 Shao C, Wang M, Chang H, et al. ACS Sustainable Chemistry & Engineering, 2017, 5(7), 6167.
79 Zeng C, Seino H, Ren J, et al. Macromolecules, 2013, 46(5), 1794.
80 Zheng K, Tian Y, Fan M, et al. Journal of Applied Polymer Science, 2018, 135(13), 46049.
81 Kuzimenkova M V, Ivanov A E, Thammakhet C, et al. Polymer, 2008, 49(6), 1444.
82 Tarus D, Hachet E, Messager L, et al. Macromolecular Rapid Communications, 2014, 35(24), 2089.
83 Casuso P, Odriozola I, Pérez-San Vicente A, et al. Biomacromolecules, 2015, 16(11), 3552.
84 Chang R, Wang X, Li X, et al. ACS Applied Materials & Interfaces, 2016, 8(38), 25544.
85 Yang X, Liu G, Peng L, et al. Advanced Functional Materials, 2017, 27(40), 1703174.
86 Liu H, Li C, Wang B, et al. Cellulose, 2018, 25(1), 559.
87 Liu S, Kang M, Li K, et al. Chemical Engineering Journal, 2018, 334, 2222.
88 Xin Y, Yuan J. Polymer Chemistry, 2012, 3(11), 3045.
89 Lei X, Huang Y, Liang S, et al. Materials Letters, 2020, 268, 127598.
90 Lv C, Zhao K, Zheng J. Macromolecular Rapid Communications, 2018, 39(8), 1700686.
91 Sun J, Pu X, Liu M, et al. ACS Nano, 2018, 12(6), 6147.
92 Yao Y, Xiao M, Liu W. Macromolecular Chemistry and Physics, 2021, 222(8), 2100002.
93 Shi Z. Multi-level reversible interaction synergistically enhances self-hea-ling polymer materials. Ph. D. Thesis, Jilin University, China, 2020(in Chinese).
石振. 多层次可逆相互作用协同增强自修复聚合物材料. 博士学位论文, 吉林大学, 2020.
94 Liu S S. Construction of micro/nano structures of self-healing p(MMA/nBA) copolymer for control cell behaviors. Ph. D. Thesis, Xiangtan University, China, 2020(in Chinese).
刘素素. p(MMA/nBA)自愈合材料的微纳结构构建及其细胞调控作用研究. 博士学位论文, 湘潭大学, 2020.
95 Liu J, Liu Y, Wang Y, et al. Materials Today Communications, 2017, 13, 282.
96 Qian Y Q. Synthesis and properties of selenium containing polyurethane based self-healing material. Ph. D. Thesis, Soochow University, China, 2019(in Chinese).
钱玉清. 含二硒键聚氨酯自修复材料的合成及性能研究. 博士学位论文, 苏州大学, 2019.
97 Ji S, Cao W, Yu Y, et al. Angewandte Chemie, 2014, 53(26), 6781.
98 Wu Z H. Study on the preparation of self-healing polyurethane and its interface healing mechanism. Ph. D. Thesis, Beijing University of Chemical Technology, China, 2020(in Chinese).
吴泽华. 自修复聚氨酯的制备及其界面修复机制研究. 博士学位论文, 北京化工大学, 2020.
99 Xu S B. Studies on preparation and properties of self-healing polyurethane. Ph. D. Thesis, University of Science and Technology of China, China, 2020(in Chinese).
许少斌. 自修复聚氨酯材料的制备与性能研究. 博士学位论文, 中国科学技术大学, 2020.
100 Cheng B, Lu X, Zhou J, et al. ACS Sustainable Chemistry & Enginee-ring, 2019, 7(4), 4443.
101 Hu J, Mo R, Jiang X, et al. Polymer, 2019, 183, 121912.
102 Liu M, Zhong J, Li Z, et al. European Polymer Journal, 2020, 124, 109475.
103 Rekondo A, Martin R, Ruiz de Luzuriaga A, et al. Materials Horizons, 2014, 1(2), 237.
104 Xu W M, Rong M Z, Zhang M Q. Journal of Materials Chemistry A, 2016, 4(27), 10683.
105 Yang S, Wang S, Du X, et al. Chemical Engineering Journal, 2020, 391, 123544.
106 Zhao J, Xu R, Luo G, et al. Polymer Chemistry, 2016, 7(47), 7278.
107 Guo Q, Huang B, Lu C, et al. Materials Horizons, 2019, 6(5), 996.
108 Yan H, Dai S, Chen Y, et al. Chemistryselect, 2019, 4(36), 10719.
109 Yang Z, Li H, Zhang L, et al. Journal of Colloid and Interface Science, 2020, 570, 1.
110 Chang K, Jia H, Gu S Y. European Polymer Journal, 2019, 112, 822.
111 Xu Y, Chen D. Materials Chemistry and Physics, 2017, 195, 40.
112 Li Y H, Guo W J, Li W J, et al. Chemical Engineering Journal, 2020, 393, 124583.
113 Chen Y, Tang Z, Liu Y, et al. Macromolecules, 2019, 52(10), 3805.
114 Pignanelli J, Billet B, Straeten M, et al. Soft Matter, 2019, 15(38), 7654.
115 Lin C, Sheng D, Liu X, et al. Journal of Polymer Science, 2019, 57(22), 2228.
116 Zhu S D, Zhao Q Z, Wang X H, et al. Acta Materiae Compositae Sinica, 2022, 39(2), 489 (in Chinesea).
朱世东, 赵乾臻, 王星海, 等. 复合材料学报, 2022, 39(2), 489.
117 Kim J T, Kim B K, Kim E Y, et al. European Polymer Journal, 2013, 49(12), 3889.
118 Lin C, Sheng D, Liu X, et al. Polymer, 2017, 127, 241.
119 Jiang M J, Zhang Y, Wu G, et al. Composites Part B: Engineering, 2019, 177, 107369.
120 Du W, Jin Y, Lai S, et al. Polymer, 2018, 158, 120.
121 Liu C, Li J, Jin Z, et al. Composites Communications, 2019, 15, 155.
[1] 周传辉, 王玺朝, 何国杜, 董岚, 吴子华, 谢华清, 王元元. 基于高稳定水基石墨烯/骨胶纳米流体的光热转换性能研究[J]. 材料导报, 2025, 39(3): 23120093-6.
[2] 薛赞, 晋玺, 毛周朱, 兰爱东, 王大雨, 乔珺威. 热机械处理提高Cr47Ni33Co10Fe10多组元共晶合金力学性能[J]. 材料导报, 2025, 39(3): 23120100-6.
[3] 刘晓楠, 张春晓, 王世合, 张高展, 毛继泽, 曹少华, 刘国强. 养护制度对添加纳米SiO2超高性能混凝土动静态力学性能的影响[J]. 材料导报, 2025, 39(2): 23070188-7.
[4] 景宏君, 张超伟, 高萌, 丁仁红, 李毅民, 康明珂, 周子涵, 朱韶峰. 骨架密实型水泥稳定煤矸石级配设计与性能研究[J]. 材料导报, 2025, 39(2): 22040252-7.
[5] 曹雷刚, 侯鹏宇, 杨越, 蒙毅, 刘园, 崔岩. AlCoCrFeNix高熵合金高温热处理微观组织演变及力学性能[J]. 材料导报, 2025, 39(2): 23120247-7.
[6] 张婷, 吴翠玲, 籍冰晗, 韩梦瑶, 杜雪岩. 再生纤维素基三明治结构复合薄膜的电磁屏蔽性能[J]. 材料导报, 2025, 39(2): 23100181-6.
[7] 马豪达, 白银, 陈波, 葛龙甄, 白延杰, 张丰. 水胶比和橡胶掺量对砂浆力学性能及能量演化规律的影响[J]. 材料导报, 2025, 39(1): 23120226-7.
[8] 路正楠, 张鹏, 盛扬, 孙一新, MarkBradley, 张嵘. 鲁米诺自发光在聚氨酯光敏剂介导光动力治疗中的应用[J]. 材料导报, 2025, 39(1): 23110275-7.
[9] 张立卿, 边明强, 王云洋, 许开成, 陈梦成, 韩宝国. 自修复混凝土修复性能评估中的若干关键技术与方法研究综述[J]. 材料导报, 2024, 38(9): 22100028-23.
[10] 应敬伟, 苏飞鸣, 席晓莹, 刘剑辉. 石墨烯纳米片增强水泥砂浆的抗氯离子扩散和抗硫酸盐侵蚀性能[J]. 材料导报, 2024, 38(9): 22090282-9.
[11] 王子健, 孙舒蕾, 肖寒, 冉旭东, 陈强, 黄树海, 赵耀邦, 周利, 黄永宪. 搅拌摩擦固相沉积增材制造研究现状[J]. 材料导报, 2024, 38(9): 22100039-16.
[12] 白云官, 吉小超, 李海庆, 魏敏, 于鹤龙, 张伟. 原位合成的钛合金@CNTs粉体SPS制备TiC/Ti复合材料的微结构与性能[J]. 材料导报, 2024, 38(9): 22120175-7.
[13] 邝亚飞, 李永斌, 张艳, 陈峰华, 孙志刚, 胡季帆. SPS烧结Ni-Mn-In合金的马氏体相变和力学性能研究[J]. 材料导报, 2024, 38(9): 23110107-6.
[14] 王艳, 高腾翔, 张少辉, 李文俊, 牛荻涛. 不同形态回收碳纤维水泥基材料的力学与导电性能[J]. 材料导报, 2024, 38(9): 23010043-9.
[15] 常川川, 李菊, 李晓红, 金俊龙, 张传臣, 季亚娟. 热处理对同质异态TC17钛合金线性摩擦焊接头的影响[J]. 材料导报, 2024, 38(8): 22080152-5.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed