Please wait a minute...
材料导报  2024, Vol. 38 Issue (1): 22050280-10    https://doi.org/10.11896/cldb.22050280
  高分子与聚合物基复合材料 |
自修复聚氨酯材料的研究进展
刘亚豪1,2, 王源升1, 杨雪3,4, 黄威1,2, 李科5, 王轩1,*
1 海军工程大学基础部,武汉 430033
2 海军工程大学舰船与海洋学院,武汉 430033
3 海军工程大学振动与噪声研究所,武汉 430033
4 海军工程大学船舶振动噪声重点实验室,武汉 430033
5 92941部队,辽宁 葫芦岛 125001
Research Progress of Self-healing Polyurethane Materials
LIU Yahao1,2, WANG Yuansheng1, YANG Xue3,4, HUANG Wei1,2, LI Ke5, WANG Xuan1,*
1 Department of Basics, Naval University of Engineering, Wuhan 430033, China
2 College of Naval Architecture and Ocean, Naval University of Engineering, Wuhan 430033, China
3 Institute of Noise & Vibration, Naval University of Engineering, Wuhan 430033, China
4 National Key Laboratory on Ship Vibration & Noise, Naval University of Engineering, Wuhan 430033, China
5 Unit 92941, Huludao 125001, Liaoning, China
下载:  全 文 ( PDF ) ( 36371KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 聚氨酯材料因具有优异的综合性能而得到了广泛应用,但是其在使用过程中不可避免地会产生微裂纹等结构破坏,而自修复技术是解决这一问题的有效方案。本文阐述了非本征型和本征型自修复的机理,重点综述了本征型自修复材料的设计方法和研究进展,讨论了不同设计方法对材料自修复性能、力学性能等的影响,最后针对自修复材料自修复性能和力学性能的平衡问题,探讨了复合型自修复体系的可行性、设计思路和最新进展,提出了复合型自修复材料是今后的一大发展趋势,并展望了自修复材料面临的挑战和发展方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘亚豪
王源升
杨雪
黄威
李科
王轩
关键词:  自修复  聚氨酯  可逆动态键  力学性能  石墨烯    
Abstract: Owing to their excellent comprehensive properties, polyurethane materials have been extensively used in commercial applications. However, such materials inevitably undergo structural damage such as microcracks during their service life. Recently, self-healing technology has been proposed as a feasible solution to this problem. Therefore, in this paper, the mechanisms of extrinsic and intrinsic self-healing materials are reviewed by focusing on the latest research progress and methods for designing intrinsic self-healing materials. The influences of different design methods on the self-healing and mechanical properties of the materials are discussed.Subsequently, aiming to address the difficulty in achieving a balance between self-healing and the mechanical properties of self-healing materials, composite self-healing materials have been proposed as a major development trend of the future, and therefore, the feasibility, design concepts, and latest research progress of such composite self-hea-ling systems are discussed and analyzed. Finally, current challenges and future development directions are summarized.
Key words:  self-healing    polyurethane    reversible dynamic bond    mechanical property    graphene
发布日期:  2024-01-16
ZTFLH:  TQ323.8  
基金资助: 十三五装备预研领域基金(6140004040101)
通讯作者:  王源升,海军工程大学教授、博士研究生导师。1982年、1985年于海军工程大学分别获学士和硕士学位,1995年于四川大学获博士学位。现为海军工程大学教授,长期从事高分子材料及其应用研究工作,曾任高分子材料工程国家重点实验室主任等。发表SCI学术论文100余篇,先后获国家发明三等奖1项、军队科技进步一等奖3项等。入选国家有突出贡献的中青年专家,国家“百千万人才工程”第一、二层次人选等。
王轩,海军工程大学副教授、硕士研究生导师。2008年于湖南大学获得理学学士学位,2013年于海军工程大学获得硕士学位。目前从事材料科学与工程、化学、高分子材料教学研究工作,发表SCI学术论文10余篇。1069755331@qq.com   
作者简介:  刘亚豪,2015年9月、2021年12月于陆军工程大学分别获得工学学士学位和硕士学位。现为海军工程大学舰船与海洋学院博士研究生,在王源升教授和王轩副教授的指导下进行研究。目前主要研究领域为聚氨酯材料。
引用本文:    
刘亚豪, 王源升, 杨雪, 黄威, 李科, 王轩. 自修复聚氨酯材料的研究进展[J]. 材料导报, 2024, 38(1): 22050280-10.
LIU Yahao, WANG Yuansheng, YANG Xue, HUANG Wei, LI Ke, WANG Xuan. Research Progress of Self-healing Polyurethane Materials. Materials Reports, 2024, 38(1): 22050280-10.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22050280  或          http://www.mater-rep.com/CN/Y2024/V38/I1/22050280
1 Qin R. High damping polyurethane elastomer withcontrollable wide temperature range based on dynamiccovalent bond and dangling chain synergy. Ph. D. Thesis, South China University of Technology, China, 2020 (in Chinese).
秦锐. 基于动态共价键和悬挂链协同作用的可控宽温域高阻尼聚氨酯弹性体. 博士学位论文, 华南理工大学, 2020.
2 Gu M, Luo S K, Zhou Q M. Chemical Propellants & Polymeric Materials, 2011, 9(1), 46 (in Chinese).
顾远, 罗世凯, 周秋明. 化学推进剂与高分子材料, 2011, 9(1), 46.
3 Liu C, Xue X, Yin Q, et al. Fine Chemicals, 2022, 39(3), 454 (in Chinese).
刘超, 薛新, 殷青, 等. 精细化工, 2022, 39(3), 454.
4 Mou C L, Wu J J, Zhang Z. Plastics Science and Technology, 2021, 49(11), 119(in Chinese).
牟春龙, 吴佳静, 张振. 塑料科技, 2021, 49(11), 119.
5 Sun Y M, Song H H, Li L X. Engineering Plastics Application, 2016, 44(3), 1 (in Chinese).
孙雨萌, 宋怀河, 李丽霞, 等. 工程塑料应用, 2016, 44(3), 1.
6 Jud K, Kausch H H, Williams J G. Journal of Materials Science, 1981, 16(1), 204.
7 Zhai L, Narkar A, Ahn K. Nano Today, 2020, 30, 100826.
8 Luo X, Mather P T. ACS Macro Letters, 2013, 2(2), 152.
9 Bai J, Li H, Shi Z, et al. Macromolecules, 2015, 48(11), 3539.
10 Roy C K, Guo H L, Sun T L, et al. Advanced Materials, 2015, 27(45), 7344.
11 Imbernon L, Oikonomou E K, Norvez S, et al. Polymer Chemistry, 2015, 6(23), 4271.
12 Chao W, Nan L, Ranulfo A, et al. Advanced Materials, 2018, 25(40), 5785.
13 Mao J, Zhao C, Li Y, et al. Composites Communications, 2020, 17, 22.
14 Wan T, Chen D. Progress in Organic Coating, 2018, 121, 73.
15 Nevejans S, Ballard N, Fernández M, et al. Polymer, 2019, 179, 121670.
16 Yang J, Zhang Z, Yan Y, et al. ACS Applied Materials & Interfaces, 2020, 12(11), 13239.
17 Li S N. Synthesis and application of polyurethanes containing multiple self-healing systems. Ph. D. Thesis, Suzhou University of Science and Technology, China, 2021(in Chinese).
李绍南. 含有多重自修复体系的聚氨酯合成与应用研究. 博士学位论文, 苏州科技大学, 2021.
18 Cho S H, Andersson H M, White S R, et al. Advanced Materials, 2006, 18(8), 997.
19 White S R, Sottos N R, Geubelle P H, et al. Nature, 2001, 409(6822), 794.
20 Willocq B, Odent J, Dubois P, et al. RSC Advances, 2020, 10(23), 13766.
21 Bleay S M, Loader C B, Hawyes V J, et al. Composites Part A: Applied Science and Manufacturing, 2001, 32(12), 1767.
22 Lee M W, Yoon S S, Yarin A L. ACS Applied Materials & Interfaces, 2017, 9(20), 17449.
23 Trask R S, Bond I P. Smart Materials and Structures, 2006, 15(3), 704.
24 Kim J R, Netravali A N. Composites Science and Technology, 2017, 143, 22.
25 Dong B, Ding W, Qin S, et al. Construction and Building Materials, 2018, 168, 11.
26 Zemskov S V, Jonkers H M, Vermolen F J. Journal of Intelligent Material System and Structures, 2012, 25(1), 4.
27 Toohey K S, Sottos N R, Lewis J A, et al. Nature Materials, 2007, 6(8), 581.
28 Utrera-Barrios S, Verdejo R, López-Manchado M A, et al. Materials Horizons, 2020, 7(11), 2882.
29 Jin B Y. Fabrication of Mussel-memetic polymers with self-healing and electrochemical properties. Ph. D. Thesis, Zhejiang University, China, 2020(in Chinese).
金碧玉. 仿贻贝聚合物的制备及其自修复性能和电化学性能研究. 博士学位论文, 浙江大学, 2020.
30 Zhu K, Song Q, Chen H, et al. Journal of Applied Polymer Science, 2018, 135(9), 45929.
31 Kang J, Son D, Wang G J N, et al. Advanced Materials, 2018, 30(13), 1706846.
32 Xie H, Sheng D, Zhou Y, et al. New Journal of Chemistry, 2020, 44(32), 13584.
33 Song Y, Liu Y, Qi T, et al. Angew Chemie-International Editon, 2018, 57(42), 13838.
34 Yao Y, Xu Z, Liu B, et al. Advanced Functional Materials, 2021, 31(4), 2006944.
35 Appel E A, Tibbitt M W, Greer J M, et al. ACS Macro Letters, 2015, 4(8), 848.
36 Liu X, Tang C, Han W, et al. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 529, 1016.
37 Wang Y, Wang Z, Wu K, et al. Carbohydrate Polymers, 2017, 168 112.
38 Xing R, Li S, Zhang N, et al. Biomacromolecules, 2017, 18(11), 3514.
39 Giammanco G E, Sosnofsky C T, Ostrowski A D. ACS Applied Materials & Interfaces, 2015, 7(5), 3068.
40 Hussain I, Sayed S M, Liu S, et al. European Polymer Journal, 2018, 100, 219.
41 Liu Y J, Cao W T, Ma M G, et al. ACS Applied Materials & Interfaces, 2017, 9(30), 25559.
42 Wang Z, Xie C, Yu C, et al. Macromolecular Rapid Communications, 2018, 39(6), 1700678.
43 Li C H, Wang C, Keplinger C, et al. Nature Chemistry, 2016, 8(6), 618.
44 Dong H, Snyder J F, Williams K S, et al. Biomacromolecules, 2013, 14(9), 3338.
45 Gai G, Liu L, Li C H, et al. ChemPlusChem, 2019, 84(4), 432.
46 Xu S, Sheng D, Zhou Y, et al. New Journal of Chemistry, 2020, 44(18), 7395.
47 Liu Z, Zhang L, Guan Q, et al. Advanced Functional Materials, 2019, 29(28), 1901058.
48 Xu S, Sheng D, Liu X, et al. Polymer International, 2019, 68(6), 1084.
49 Zhang Q, Niu S, Wang L, et al. Advanced Materials, 2018, 30(33), 1801435.
50 Hu Z, Liu Y, Xu X, et al. Polymer, 2019, 164, 79.
51 Park J, Murayama S, Osaki M, et al. Advanced Materials, 2020, 32(39), 2002008.
52 Wan T, Chen D. Composites Science and Technology, 2018, 168, 55.
53 Wang Z, Ren Y, Zhu Y, et al. Angewandte Chemie, 2018, 57(29), 9008.
54 Xiao L, Shi J, Wu K, et al. Reaction & Functional Polymers, 2020, 148, 104482.
55 Cheol Kim H, Na Lee J, Kim E, et al. Materials Letters, 2021, 297, 129987.
56 Yang W, Shao B, Liu T, et al. ACS Applied Materials & Interfaces, 2018, 10(9), 8245.
57 Cui W, Ji J, Cai Y F, et al. Journal of Materials Chemistry A, 2015, 3(33), 17445.
58 Tuncaboylu D C, Sari M, Oppermann W, et al. Macromolecules, 2011, 44(12), 4997.
59 Bhattacharya S, Hailstone R, Lewis C L. ACS Applied Materials & Interfaces, 2020, 12(41), 46733.
60 Hornat C C, Urban M W. Nature Communications, 2020, 11(1), 1028.
61 Rivero G, Nguyen L T, Hillewaere X K D, et al. Macromolecules, 2014, 47(6), 2010.
62 Yang Y, Davydovich D, Hornat C C, et al. Chem, 2018, 4(8), 1928.
63 Zheng N, Hou J, Xu Y, et al. ACS Macro Letters, 2017, 6(4), 326.
64 Lai Y, Kuang X, Zhu P, et al. Advanced Materials, 2018, 30(38), 1802556.
65 Otsuka H, Nagano S, Kobashi Y, et al. Chemical Communications, 2010, 46(7), 1150.
66 Deng G, Li F, Yu H, et al. ACS Macro Letters, 2012, 1(2), 275.
67 Ha Y M, Kim Y O, Ahn S, et al. European Polymer Journal, 2019, 118, 36.
68 Lei Z Q, Xiang H P, Yuan Y J, et al. Chemical Materials, 2014, 26(6), 2038.
69 Cai Y, Zou H, Zhou S, et al. ACS Applied Polymer Materials, 2020, 2(9), 3977.
70 Canadell J, Goossens H, Klumperman B. Macromolecules, 2011, 44(8), 2536.
71 Kim S M, Jeon H, Shin S H, et al. Advanced Materials, 2018, 30(1), 1705145.
72 An X, Aguirresarobe R H, Irusta L, et al. Polymer Chemistry, 2017, 8(23), 3641.
73 Fan W, Jin Y, Shi L. Polymer Chemistry, 2020, 11(34), 5463.
74 Fan W, Jin Y, Huang Y, et al. Journal of Applied Polymer Science, 2019, 136(7), 47071.
75 Du W, Jin Y, Pan J, et al. Journal of Applied Polymer Science, 2018, 135(22), 46326.
76 Ji S, Fan F, Sun C, et al. ACS Applied Materials & Interfaces, 2017, 9(38), 33169.
77 Fang Y, Du X, Jiang Y, et al. ACS Sustainable Chemistry & Enginee-ring, 2018, 6(11), 14490.
78 Shao C, Wang M, Chang H, et al. ACS Sustainable Chemistry & Engineering, 2017, 5(7), 6167.
79 Zeng C, Seino H, Ren J, et al. Macromolecules, 2013, 46(5), 1794.
80 Zheng K, Tian Y, Fan M, et al. Journal of Applied Polymer Science, 2018, 135(13), 46049.
81 Kuzimenkova M V, Ivanov A E, Thammakhet C, et al. Polymer, 2008, 49(6), 1444.
82 Tarus D, Hachet E, Messager L, et al. Macromolecular Rapid Communications, 2014, 35(24), 2089.
83 Casuso P, Odriozola I, Pérez-San Vicente A, et al. Biomacromolecules, 2015, 16(11), 3552.
84 Chang R, Wang X, Li X, et al. ACS Applied Materials & Interfaces, 2016, 8(38), 25544.
85 Yang X, Liu G, Peng L, et al. Advanced Functional Materials, 2017, 27(40), 1703174.
86 Liu H, Li C, Wang B, et al. Cellulose, 2018, 25(1), 559.
87 Liu S, Kang M, Li K, et al. Chemical Engineering Journal, 2018, 334, 2222.
88 Xin Y, Yuan J. Polymer Chemistry, 2012, 3(11), 3045.
89 Lei X, Huang Y, Liang S, et al. Materials Letters, 2020, 268, 127598.
90 Lv C, Zhao K, Zheng J. Macromolecular Rapid Communications, 2018, 39(8), 1700686.
91 Sun J, Pu X, Liu M, et al. ACS Nano, 2018, 12(6), 6147.
92 Yao Y, Xiao M, Liu W. Macromolecular Chemistry and Physics, 2021, 222(8), 2100002.
93 Shi Z. Multi-level reversible interaction synergistically enhances self-hea-ling polymer materials. Ph. D. Thesis, Jilin University, China, 2020(in Chinese).
石振. 多层次可逆相互作用协同增强自修复聚合物材料. 博士学位论文, 吉林大学, 2020.
94 Liu S S. Construction of micro/nano structures of self-healing p(MMA/nBA) copolymer for control cell behaviors. Ph. D. Thesis, Xiangtan University, China, 2020(in Chinese).
刘素素. p(MMA/nBA)自愈合材料的微纳结构构建及其细胞调控作用研究. 博士学位论文, 湘潭大学, 2020.
95 Liu J, Liu Y, Wang Y, et al. Materials Today Communications, 2017, 13, 282.
96 Qian Y Q. Synthesis and properties of selenium containing polyurethane based self-healing material. Ph. D. Thesis, Soochow University, China, 2019(in Chinese).
钱玉清. 含二硒键聚氨酯自修复材料的合成及性能研究. 博士学位论文, 苏州大学, 2019.
97 Ji S, Cao W, Yu Y, et al. Angewandte Chemie, 2014, 53(26), 6781.
98 Wu Z H. Study on the preparation of self-healing polyurethane and its interface healing mechanism. Ph. D. Thesis, Beijing University of Chemical Technology, China, 2020(in Chinese).
吴泽华. 自修复聚氨酯的制备及其界面修复机制研究. 博士学位论文, 北京化工大学, 2020.
99 Xu S B. Studies on preparation and properties of self-healing polyurethane. Ph. D. Thesis, University of Science and Technology of China, China, 2020(in Chinese).
许少斌. 自修复聚氨酯材料的制备与性能研究. 博士学位论文, 中国科学技术大学, 2020.
100 Cheng B, Lu X, Zhou J, et al. ACS Sustainable Chemistry & Enginee-ring, 2019, 7(4), 4443.
101 Hu J, Mo R, Jiang X, et al. Polymer, 2019, 183, 121912.
102 Liu M, Zhong J, Li Z, et al. European Polymer Journal, 2020, 124, 109475.
103 Rekondo A, Martin R, Ruiz de Luzuriaga A, et al. Materials Horizons, 2014, 1(2), 237.
104 Xu W M, Rong M Z, Zhang M Q. Journal of Materials Chemistry A, 2016, 4(27), 10683.
105 Yang S, Wang S, Du X, et al. Chemical Engineering Journal, 2020, 391, 123544.
106 Zhao J, Xu R, Luo G, et al. Polymer Chemistry, 2016, 7(47), 7278.
107 Guo Q, Huang B, Lu C, et al. Materials Horizons, 2019, 6(5), 996.
108 Yan H, Dai S, Chen Y, et al. Chemistryselect, 2019, 4(36), 10719.
109 Yang Z, Li H, Zhang L, et al. Journal of Colloid and Interface Science, 2020, 570, 1.
110 Chang K, Jia H, Gu S Y. European Polymer Journal, 2019, 112, 822.
111 Xu Y, Chen D. Materials Chemistry and Physics, 2017, 195, 40.
112 Li Y H, Guo W J, Li W J, et al. Chemical Engineering Journal, 2020, 393, 124583.
113 Chen Y, Tang Z, Liu Y, et al. Macromolecules, 2019, 52(10), 3805.
114 Pignanelli J, Billet B, Straeten M, et al. Soft Matter, 2019, 15(38), 7654.
115 Lin C, Sheng D, Liu X, et al. Journal of Polymer Science, 2019, 57(22), 2228.
116 Zhu S D, Zhao Q Z, Wang X H, et al. Acta Materiae Compositae Sinica, 2022, 39(2), 489 (in Chinesea).
朱世东, 赵乾臻, 王星海, 等. 复合材料学报, 2022, 39(2), 489.
117 Kim J T, Kim B K, Kim E Y, et al. European Polymer Journal, 2013, 49(12), 3889.
118 Lin C, Sheng D, Liu X, et al. Polymer, 2017, 127, 241.
119 Jiang M J, Zhang Y, Wu G, et al. Composites Part B: Engineering, 2019, 177, 107369.
120 Du W, Jin Y, Lai S, et al. Polymer, 2018, 158, 120.
121 Liu C, Li J, Jin Z, et al. Composites Communications, 2019, 15, 155.
[1] 吴智恒, 黄伊琳, 毕雁冰, 梁立喆, 归立发, 李卫庆, 沈培康, 田植群. 石墨烯及其衍生物改性沥青的研究进展[J]. 材料导报, 2024, 38(1): 22040410-9.
[2] 李北星, 陈鹏博, 殷实, 易浩. 附加用水量对再生砂混凝土工作性和力学性能的影响[J]. 材料导报, 2024, 38(1): 22070217-7.
[3] 王述红, 贡藩, 尹宏, 修占国. 聚酯纤维泡沫混凝土力学性能及孔结构研究[J]. 材料导报, 2024, 38(1): 22060231-8.
[4] 蔡锦文, 冯可芹, 王海波, 刘艳芳, 陈思潭. 表面修饰石墨烯制备工艺及其在金属材料中的应用研究[J]. 材料导报, 2024, 38(1): 22060277-6.
[5] 冯振宇, 张宏宇, 马佳威, 陈琨, 周良道, 沈培良, 陈向明. 晶体塑性有限元方法在增材制造金属材料力学性能研究中的应用[J]. 材料导报, 2024, 38(1): 22070235-10.
[6] 沈士泰, 陈雨晨, 卫国英, 朱本峰. CeO2/铝合金自修复阳极氧化复合膜的电化学制备及表面性能[J]. 材料导报, 2023, 37(S1): 23030301-5.
[7] 吴伟喆, 刘阳, 张艺欣, 黄建山, 闫国威. 冻融环境下FRCC孔隙结构与力学性能研究综述[J]. 材料导报, 2023, 37(S1): 23010108-12.
[8] 刘海韬, 姜如, 孙逊, 陈晓菲, 马昕, 杨方. 多孔Al2O3f/Al2O3复合材料研究进展[J]. 材料导报, 2023, 37(9): 22070158-10.
[9] 孙睿, 邬兆杰, 王栋民, 丁源, 房奎圳. 超细镁渣微粉-水泥复合胶凝材料的性能及水化机理[J]. 材料导报, 2023, 37(9): 22060197-11.
[10] 胡海波, 朱丽慧, 涂有旺, 段元满, 吴晓春, 顾炳福. 深冷处理工艺对M2高速钢显微组织与性能的影响[J]. 材料导报, 2023, 37(9): 21110028-6.
[11] 冒海燕, 朱淼, 朱雪峰, 郭子怡, 廖成成, 何雪梅, 宋晓蕾. 基于刚果红的高分子染料制备及pH响应变色性能[J]. 材料导报, 2023, 37(9): 21040018-6.
[12] 刘晓英, 阮文琳, 张育新, 饶劲松, 尹长青, 张贤明, 柳云骐. 无机-有机杂化微胶囊:制备技术及在抗磨耐腐蚀涂层中的应用[J]. 材料导报, 2023, 37(9): 21060113-9.
[13] 范雨生, 王茹. 纳米二氧化硅对丁苯共聚物/硫铝酸盐水泥复合砂浆物理力学性能的影响[J]. 材料导报, 2023, 37(9): 21080193-7.
[14] 陈磊, 徐荣正, 张利, 刘亚光, 李正坤, 张海峰, 张波. Zr基非晶夹层对Al/TA1异种金属电子束焊接头组织和性能的影响[J]. 材料导报, 2023, 37(8): 21100079-4.
[15] 卫元坤, 张优, 张政, 王菊萍, 陈飞. 基于缓蚀剂微/纳米容器的智能自修复涂层研究进展[J]. 材料导报, 2023, 37(8): 21050145-10.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed