Please wait a minute...
材料导报  2023, Vol. 37 Issue (12): 22040356-6    https://doi.org/10.11896/cldb.22040356
  无机非金属及其复合材料 |
一步法合成的2.0%Sm-0.25Pb(Mg1/3Nb2/3)O3-0.75Pb(Zr1-xTix)O3压电陶瓷的压电性能
汪跃群1, 项光磊1,*, 高亮1, 王一平2
1 杭州应用声学研究所,杭州 310023
2 南京航空航天大学机械结构力学及控制国家重点实验室,南京 210016
Piezoelectric Properties of 2.0%Sm-0.25Pb(Mg1/3Nb2/3)O3-0.75Pb(Zr1-xTix)O3 Ceramics Prepared by One-step Method
WANG Yuequn1, XIANG Guanglei1,*, GAO Liang1, WANG Yiping2
1 Hangzhou Applied Acoustics Research Institute, Hangzhou 310023, China
2 State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics & Astronautics, Nanjing 210016, China
下载:  全 文 ( PDF ) ( 8181KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 通常采用两步合成法制备铌镁酸铅-锆钛酸铅(Pb(Mg1/3Nb2/3)O3-Pb(Zr,Ti)O3,PMN-PZT)压电陶瓷,即先合成MgNb2O6前驱体。工业生产中,两步法生产效率相对较低,成本高,并影响产品性能的一致性。本工作通过高效及低成本的一步合成法,研制了高致密度和高压电性能的2.0%(摩尔分数,下同)Sm-0.25Pb(Mg1/3Nb2/3)O3-0.75Pb(Zr1-xTix)O3 (Sm-PMN-PZT)压电陶瓷。在x=0.52~0.53范围内,构建了三方相、四方相(R-T)共存的准同型相界(MPBs);Sm3+的引入增强了局域结构异质性,外电场下铁电相变的势垒较低,即自由能曲线的曲率最小,压电性能得到优化。当x=0.525时,陶瓷具有最优的综合电学性能,压电系数d33=645 pC/N,机电耦合系数kp=0.657,相对介电常数εr=3 110,介电损耗tan =1.78%,居里温度TC=242 ℃。采用瑞利定律分析可知,晶格贡献和可逆畴壁运动的内部压电响应,以及不可逆畴壁运动的外部压电响应均得到提高是该组分陶瓷获得高压电性的重要原因。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
汪跃群
项光磊
高亮
王一平
关键词:  PMN-PZT  高压电性  一步合成法  准同型相界  瑞利分析    
Abstract: Niobium magnesium-lead zirconate titanate (Pb(Mg1/3Nb2/3)O3-Pb(Zr, Ti)O3, PMN-PZT) ceramics are usually prepared by a two-step synthesis method where the MgNb2O6 precursor needs to be synthesized firstly. In industrial production, the two-step synthesis method has relatively low production efficiency and high cost and affects the consistency of product performance. In this work, 2.0mol%Sm-0.25Pb-(Mg1/3Nb2/3)O3-0.75Pb(Zr1-xTix)O3 (Sm-PMN-PZT) piezoelectric ceramics with high density and high piezoelectric properties were prepared by a one-step synthesis method with high efficiency and low cost. In the range of x=0.52—0.53, the morphotropic phase boundaries (MPBs) with the coexistence of rhombohedral (R) and tetragonal phases (T) were constructed. Introduction of Sm3+ enhances the heterogeneity of local polar structures, decreases the potential barrier required for the transition of R-T phase under external electric field (Eex), minimizes the curvature of the free energy curve and finally improves the piezoelectric properties. The ceramic at x=0.525 presents the best comprehensive electrical performance, such as piezoelectric coefficient d33=645 pC/N, the planar electromechanical coupling coefficient kp of 0.657, the relative dielectric constant εr of 3 110, the dielectric loss tanδ of 1.78%, and the ferroelectric Curie temperature TC of 242 ℃. Based on Rayleigh’s law analysis, it has been found that the ceramic at x=0.525 achieves the high piezoelectricity due to its intrinsic response of lattice contribution and reversible domain wall movement, and extrinsic piezoelectric response of irreversible domain wall movement both being enhanced.
Key words:  PMN-PZT    high piezoelectricity    one-step synthesis method    morphotropic phase boundaries    Rayleigh analysis
出版日期:  2023-06-25      发布日期:  2023-06-20
ZTFLH:  TM282  
基金资助: 国家自然科学基金联合基金项目(U2037603)
通讯作者:  * 项光磊,中级工程师,2019年硕士毕业于武汉理工大学,获得硕士学位。任职于杭州应用声学研究所,主要从事压电陶瓷材料研究,发表学术论文5篇。Xiangguanglei@foxmail.com   
作者简介:  汪跃群,高级工程师,杭州应用声学研究所压电陶瓷元件及材料部主任,1994年本科毕业于景德镇陶瓷学院,获得学士学位。主要从事压电陶瓷材料及元件、换能器技术的研究。发表学术论文10余篇,申请和授权国家专利8项。
引用本文:    
汪跃群, 项光磊, 高亮, 王一平. 一步法合成的2.0%Sm-0.25Pb(Mg1/3Nb2/3)O3-0.75Pb(Zr1-xTix)O3压电陶瓷的压电性能[J]. 材料导报, 2023, 37(12): 22040356-6.
WANG Yuequn, XIANG Guanglei, GAO Liang, WANG Yiping. Piezoelectric Properties of 2.0%Sm-0.25Pb(Mg1/3Nb2/3)O3-0.75Pb(Zr1-xTix)O3 Ceramics Prepared by One-step Method. Materials Reports, 2023, 37(12): 22040356-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22040356  或          http://www.mater-rep.com/CN/Y2023/V37/I12/22040356
1 Damjanovic D. Reports on Progress in Physics, 1998, 61(9), 1267.
2 Zhang S J, Li F, Jiang X N, et al. Progress of Materials Science, 2015, 68, 1.
3 Smolensky G, Isupov V, Granovaskaya A, et al. Journal of Applied Physics, 1954, 25(6), 809.
4 Topolov V Y, Ye Z G. Physical Review B, 2004, 70, 094113.
5 Joe K, Mark L, Chutima T, et al. Journal of the American Ceramic Society, 1997, 80(4), 957.
6 Noheda B, Cox D E, Shirane G, et al. Physical Review B, 2002, 66(5), 054104.
7 Chen J, Chan H M, Harmer M P. Journal of the American Ceramic Society, 1989, 72, 593.
8 Li F, Lin D B, Chen Z B, et al. Nature Materials, 2018, 17, 349.
9 Zheng K, Quan Y, Zhuang J, et al. Journal of the European Ceramic Society, 2021, 41(4), 2458.
10 Guo Q H, Hou L T, Li F, et al. Journal of the American Ceramic Society, 2019, 102, 7428.
11 Dong C, Liang R H, Zhou Z Y, et al. Journal of Inorganic Materials, 2021, 36(12), 1270.
12 Panigrahi S C, Das P R, Padhee R, et al. Ferroelectrics, 2018, 524(1), 14.
13 Li K, Sun E, Zhang Y, et al. Journal of Materials Chemistry C, 2021, 9(7), 2426.
14 Guo Q H, Li F, Xia F Q, et al. ACS Applied Materials & Interfaces, 2019, 11(46), 43359.
15 Wang Y Q, Xiang G L, Gao L. Bulletin of the Chinese ceramic Society, 2022, 41(4), 1433(in Chinese).
汪跃群, 项光磊, 高亮. 硅酸盐通报, 2022, 41(4), 1433.
16 Zhang J, Wang R X, Sun L, et al. Journal of the American Ceramic Society, 2019, 102, 1866.
17 Kalema V, Shih W Y, Shih W H. Ceramics International, 2018, 44, 2835.
18 Wang H L, Zhang F F, Yu C, et al. Ceramics International, 2021, 47, 12284.
19 Sakaki C, Nwwalkar B L, Komarneni S, et al. Japanese Jounral of Applied Physics, 2001, 40(12), 6907.
20 Eitel R E, Shrout T R, Randall C A. Journal of Applied Physics, 2006, 99(12), 177.
21 Li F, Zhang S, Damjanovic D, et al. Advanced Functional Materials, 2018, 28(37), 1801504.
[1] 楚丙凯, 刘璐璐, 郝继功, 李伟, 曾华荣. BNT基铁电陶瓷的温度诱导高电致应变响应及其机理研究[J]. 材料导报, 2023, 37(7): 21100234-6.
[2] 唐明响, 陈良, 祁核, 孙胜东, 刘辉, 陈骏. 缺陷偶极子调控铅基钙钛矿压电陶瓷性能的研究进展[J]. 材料导报, 2022, 36(2): 20090329-6.
[3] 褚涛, 王五松, 王学杰, 张田才, 杨桂, 翟继卫. 高机械品质因数压电陶瓷材料的研究进展及应用[J]. 材料导报, 2019, 33(z1): 165-170.
[4] 樊娇娇, 何新华, 符小艺, 陈丹玲. Na0.5Bi2.5Nb2O9-Na0.5Bi4.5Ti4O15材料的微观结构及电性能[J]. 材料导报, 2018, 32(22): 3839-3844.
[5] 尹奇异,田长安,胡舒婷,王成泽,王婷婷,阳杰,吉冬冬,刘洋. CeO2掺杂制备Ba0.9Ca0.1Ti1-xSnxO3压电陶瓷的结构及电性能[J]. 材料导报编辑部, 2017, 31(22): 26-29.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed