Please wait a minute...
材料导报  2020, Vol. 34 Issue (14): 14070-14078    https://doi.org/10.11896/cldb.19060039
  无机非金属及其复合材料 |
养护湿度对橡胶水泥砂浆动态压缩破坏特征及能量耗散的影响
杨荣周, 徐颖, 陈佩圆
安徽理工大学土木建筑学院, 淮南 232001
Effect of Curing Humidity on Dynamic Compressive Failure Characteristics and Energy Dissipation of Rubber Cement Mortar
YANG Rongzhou, XU Ying, CHEN Peiyuan
School of Civil Engineering and Architecture, Anhui University of Science and Technology, Huainan 232001, China
下载:  全 文 ( PDF ) ( 4997KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为了探究养护湿度对橡胶水泥砂浆动态压缩破坏特征及能量耗散的影响,开展了95%和50%两种相对湿度养护下橡胶水泥砂浆的分离式霍普金森压杆(SHPB)动态压缩试验。结果表明,试件的比能量吸收值与入射能和应变率均为线性正相关;增加橡胶掺量会减小比能量吸收值,但会显著增大平均破碎块度/减小分形维数;降低养护湿度会显著减小比能量吸收值以及减小平均破碎块度/增大分形维数,但随着应变率的增加,干、湿养护之间的平均破碎块度差值和分形维数差值逐渐减小;当比能量吸收值在1.0附近时,各组试件的破碎块度/分形维数相差最小,主要分布在10~25 mm/(1.85~2.20),当入射能在600~800 J时,试件的破碎块度和分形维数分布均比较集中。通过对SHPB试验中试件内部橡胶颗粒的耗能机制及试验中所伴随的不同能量进行讨论分析,印证了橡胶水泥砂浆良好的抗冲击破裂性,解释说明了在同一入射能水平下,由于橡胶颗粒的掺入和养护湿度的降低,导致反射能比率增大,透射能比率和破坏能比率均减小这一试验结果。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨荣周
徐颖
陈佩圆
关键词:  养护湿度  橡胶水泥砂浆  分离式霍普金森压杆(SHPB)  比能量吸收值  压缩破坏  波阻抗    
Abstract: To explore the effect of curing humidity on dynamic compressive failure characteristics and energy dissipation of rubber cement mortar, the split Hopkinson pressure bar (SHPB) tests of rubber cement mortar under 95% and 50% relative humidity curing were carried out. The results show that the specific energy absorption value of the specimens is a linear positive correlation with the incident energy and strain rate. Although increasing the rubber content will reduce the specific energy absorption value, it will significantly increase the average fragment size/decrease the fractal dimension. Reducing curing humidity will significantly reduce the specific energy absorption value and decrease the average fragment size/increase the fractal dimension, but with the increase of strain rate, the difference of the average fragment size and fractal dimension under dry and wet curing gradually decreases. When the specific energy absorption value is 1.0, the fragment size/fractal dimension of the specimens in each group has the smallest difference, mainly distributed in 10—25 mm/(1.85—2.20). When the incident energy is 600—800 J, the fragment size and fractal dimension distribution of the specimens are relatively concentrated. By discussing and analyzing the mechanism of the energy dissipation of rubber particles in the sample of the SHPB test, it was proved that rubber cement mortar has good impact cracking resis-tance. Through the discussion and analysis of the different energies accompanied by the experiment, it was explained that at the same incident energy level, due to the addition of rubber particles and the reduction of curing humidity, the reflected energy ratio increases, the transmitted energy ratio and the failure energy ratio decreases.
Key words:  curing humidity    rubber cement mortar    split Hopkinson pressure bar (SHPB)    specific energy absorption value    compressive fai-lure    wave impedance
               出版日期:  2020-07-25      发布日期:  2020-07-14
ZTFLH:  TB332  
基金资助: 国家自然科学基金(51728201)
作者简介:  杨荣周,安徽理工大学博士研究生,主要从事材料力学性能、能量及爆炸冲击方面的研究。
徐颖,教授,博士,博士研究生导师,长期从事土木工程材料、岩土工程爆破、矿山建设工程等方向的教学和科研工作,先后主持国家自然科学基金重点项目、面上项目及省部级项目20项。发表论文150余篇,其中被SCI、EI收录40篇,出版《地下工程爆破理论及应用》《软弱层带爆炸注浆理论与实践》等学术专著和教材5部。获省部级科学技术一等奖1项、二等奖2项、三等奖10项、获教育部新世纪优秀人才、全国有突出贡献的爆破专家、安徽省学术和技术带头人、安徽省优秀青年科技创新奖等荣誉称号,学术兼职为中国爆破行业协会副会长、中国力学学会工程爆破专业委员会副主任委员、中国煤炭专家委员会爆破器材与技术专家委员会委员、中国工程爆破专家委员会副主任委员等。
引用本文:    
杨荣周, 徐颖, 陈佩圆. 养护湿度对橡胶水泥砂浆动态压缩破坏特征及能量耗散的影响[J]. 材料导报, 2020, 34(14): 14070-14078.
YANG Rongzhou, XU Ying, CHEN Peiyuan. Effect of Curing Humidity on Dynamic Compressive Failure Characteristics and Energy Dissipation of Rubber Cement Mortar. Materials Reports, 2020, 34(14): 14070-14078.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19060039  或          http://www.mater-rep.com/CN/Y2020/V34/I14/14070
1 Shabarov A N. Journal of Mining Science, 2001, 37(2), 129.
2 Ortlepp W D. The design of support for the containment of rockburst da-mage in tunnels—an engineering approach. In: Kaiser P K,Mc Creath D R. Rock support in mining and underground construction, Balkema, Rotterdam, 1992, pp.593.
3 Li C C. International Journal of Rock Mechanics and Mining Sciences, 2010, 47(3), 396.
4 He M C, Gong W L, Wang J, et al. International Journal of Rock Mechanics and Mining Sciences, 2014, 67, 29.
5 Li C C, Doucet C. Rock Mechanics and Rock Engineering, 2012, 45, 193.
6 Cheng L, Zhang Y D, Ji M, et al. Mathematical Problems in Enginee-ring, DOI: 10.1155/2015/434567.
7 Hernández-Olivares F, Barluenga G. Cement and Concrete Research, 2004, 34(1), 109.
8 Qiao L, Zhou M, Yang J M, et al. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(4), 961(in Chinese).
乔兰, 周明, 杨建明, 等. 岩石力学与工程学报, 2018, 37(4), 961.
9 Feng W H, Liu F, Yang F, et al. Construction and Building Materials, 2018, 165(20), 675.
10 Liu F, Chen G X, Li L J, et al. Construction and Building Materials, 2012, 36, 604.
11 Long G C, Li N, Xue Y H, et al. Journal of the Chinese Ceramic Society, 2016, 44(8), 1081(in Chinese).
龙广成, 李宁, 薛逸骅, 等. 硅酸盐学报, 2016, 44(8), 1081.
12 Xu Y, Yang R Z. Journal of Materials in Civil Engineering, DOI: 10.1061/(ASCE)MT.1943-5533.0003351.
13 Yang R Z, Xu Y, Chen P Y, et al. Material Reports B:Research Papers, 2020, 34(2), 04049(in Chinese).
杨荣周, 徐颖,陈佩圆, 等. 材料导报:研究篇, 2020, 34(2), 04049.
14 Ravichandran G, Subhash G. Journal of the American Ceramic Society, 1994, 77(1), 263.
15 Song L, Hu S S. Explosion and Shock Waves, 2005, 25(4), 368(in Chinese).
宋力, 胡时胜. 爆炸与冲击, 2005, 25(4), 368.
16 Lu F Y. Hopkinson bar experimental technique, Science Press, China, 2013(in Chinese).
卢芳云. 霍普金森杆实验技术, 科学出版社, 2013.
17 Gao G F, Guo Y B. Explosion and Shock Waves, 2019, 39(3), 033103-1(in Chinese).
高光发, 郭扬波. 爆炸与冲击, 2019, 39(3), 033103-1.
18 Yan D M, Liu K H, Li H D, et al. Journal of Hydraulic Engineering, 2015, 46(9), 1110(in Chinese).
闫东明, 刘康华, 李贺东, 等. 水利学报, 2015, 46(9), 1110.
19 Xu J Y, Liu S. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(z2), 3109(in Chinese).
许金余, 刘石. 岩石力学与工程学报, 2013, 32(z2), 3109.
20 Liu J L, Xu J Y, Ren W B, et al. Materials Review B:Research Papers, 2016, 30(12), 157(in Chinese).
刘俊良, 许金余, 任韦波, 等. 材料导报:研究篇, 2016, 30(12), 157.
21 Zhang Z X, Kou S Q, Jiang L G, et al. International Journal of Rock Mechanics and Mining Sciences, 2000, 37(5), 745.
22 Zhang Z Z. Energy evolution mechanism during rock deformation and fai-lure, China University of Mining and Technology Press, China, 2014(in Chinese).
张志镇. 岩石变形破坏过程中的能量演化机制, 中国矿业大学出版社, 2014.
23 Zhang R R, Jing L W. Journal of China Coal Society, 2018, 43(7), 1884(in Chinese).
张蓉蓉, 经来旺. 煤炭学报, 2018, 43(7), 1884.
24 Xu J Y, Liu S. Rock and Soil Mechanics, 2012, 33(11), 3225(in Chinese).
许金余, 刘石. 岩土力学, 2012, 33(11), 3225.
25 Zhi J Y, Wang S P, Wang H Q, et al. Acta Polymerica Sinica, 2017(4), 708(in Chinese).
智杰颖, 王慎平, 王海庆, 等. 高分子学报, 2017(4), 708.
26 Yang C H, Ma H L, Liu J F. Rock and Soil Mechanics, 2009, 30(12), 3562(in Chinese).
杨春和, 马洪岭, 刘建锋. 岩土力学, 2009, 30(12), 3562.
27 Li M, Qiao L, Li Q W. Chinese Journal of Geotechnical Engineering, 2017, 39(7), 1336(in Chinese).
李淼, 乔兰, 李庆文. 岩土工程学报, 2017, 39(7), 1336.
28 Wang S M, Li X B, Gong F Q, et al. Engineering Mechanics, 2013, 30(2), 143(in Chinese).
王世鸣, 李夕兵, 宫凤强, 等. 工程力学, 2013, 30(2), 143.
[1] 杨荣周, 徐颖, 陈佩圆, 葛进进. 干、湿养护下橡胶细集料水泥砂浆压缩破裂及能量演化特性[J]. 材料导报, 2020, 34(4): 4049-4055.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed