POLYMERS AND POLYMER MATRIX COMPOSITES |
|
|
|
|
|
Research on the Mechanical and Ablation Properties of Scratchable Stress Release Materials |
LI Yang1,2,*, CHEN Yanbin1, HU Junjie1, WU Qianqiu1, HUANG Hailong1
|
1 Hubei Institute of Aerospace Chemotechnology, Xiangyang 441003, Hubei, China 2 National Key Laboratory of Aerospace Chemical Power, Xiangyang 441003, Hubei, China |
|
|
Abstract To enhance the efficiency of stress release layer formation, a novel scratchable composite is devised to develop the stress-release material. Herein, the effects of carbon fiber powder, polyimide fiber, and aramid pulp on the mechanical and ablation properties of CTBN-based composites are studied. It is found that the addition of carbon fiber powder can increase the tensile strength of the composites from 3.97 MPa to 4.54 MPa, and the ablation resistance of the composites is also improved to a certain extent. In addition, the addition of polyimide fiber can reduce the line ablation rate of the composites from 0.292 mm/s to 0.151 mm/s, but the mechanical properties are also significantly reduced. Moreover, the addition of aramid pulp can greatly improve the ablation performance while retaining the most mechanical properties of the composites. Furthermore, with 0.9 phr aramid pulp added, the CTBN-based composites maintain the tensile strength of 3.96 MPa, the elongation at break of 144%, the ablation rate of 0.165 mm/s, and the tear strength from EPDM-based composites of 1.80 MPa, and can be formed through scrape coating, which is a potential candidate for the scratchable stress release materials.
|
Published: 25 May 2025
Online: 2025-05-13
|
|
|
|
1 Wang X R, Wang G, Qiang H F, et al. Journal of Solid Rocket Technology, 2019, 42(3), 334(in Chinese). 王学仁, 王广, 强洪夫, 等. 固体火箭技术, 2019, 42(3), 334. 2 Han Z Q, Wu Z P, Wu D Z. Aerospace Materials & Technology, 2013, 43(6), 45(in Chinese). 韩忠强, 吴战鹏, 武德珍. 宇航材料工艺, 2013, 43(6), 45. 3 Lyu R G, Li T S. Lubrication Engineering, 2002, 27(6), 16(in Chinese). 吕仁国, 李同生. 润滑与密封, 2002, 27(6), 16. 4 Chen X, Xiao F L, Yuan W N. China Rubber Industry, 2013, 60(11), 671(in Chinese). 陈翔, 肖风亮, 袁维娜. 橡胶工业, 2013, 60(11), 671. 5 Zhang Y, Liu X F, Yan S T, et al. Journal of Functional Materials, 2020, 51(11), 11103(in Chinese). 张颖, 刘晓峰, 阎述韬, 等. 功能材料, 2020, 51(11), 11103. 6 Wang C, Xiao J Y, Liang T F, et al. Journal of Solid Rocket Technology, 2018, 41(3), 376(in Chinese). 王春, 校金友, 梁腾飞, 等. 固体火箭技术, 2018, 41(3), 376. 7 Liu J K, Pan L J. Composites Science and Engineering, 2021(2), 72(in Chinese). 刘吉凯, 潘利剑. 复合材料科学与工程, 2021(2), 72. 8 Zhou R J, Li C Q, Yang X H, et al. Materials Reports, 2015, 29(4), 60(in Chinese). 周荣杰, 李超群, 杨晓红, 等. 材料导报, 2015, 29(4), 60. 9 Wen H Y, Zhang W H, Liu T, et al. Journal of Materials Engineering, 2021, 49(3), 100(in Chinese). 文华银, 张文焕, 刘涛, 等. 材料工程, 2021, 49(3), 100. 10 Zhang C G, Lu G L, Zhang J S, et al. Silicone Material, 2005, 19(1), 1(in Chinese). 张长贵, 鲁国林, 张劲松, 等. 有机硅材料, 2005, 19(1), 1. 11 Yin Z S, Liu Y H, Liu Y H. Aerospace Manufacturing Technology, 2016(5), 63(in Chinese). 尹正帅, 刘义华, 刘艳辉. 航天制造技术, 2016(5), 63. 12 Zhang H B, Yin J, Xiong X. Materials Reports, 2005, 19(7), 97(in Chinese). 张红波, 尹健, 熊翔. 材料导报, 2005, 19(7), 97. |
|
|
|