POLYMERS AND POLYMER MATRIX COMPOSITES |
|
|
|
|
|
Research Progress on Polyimide Composite Thermal Insulation Materials |
LI Renhao1,2, BAO Yan1,*, ZHAO Haihang1
|
1 College of Bioresources Chemical and Materials Engineering (College of Flexible Electronics), Shaanxi University of Science and Technology, Xi’an 710021, China 2 School of General Aviation, Jingchu University of Technology, Jingmen 448000, Hubei, China |
|
|
Abstract Polyimide exhibits excellent mechanical properties, thermal stability, and low thermal conductivity. In recent years, the application of polyimide composite materials in the field of thermal insulation has attracted widespread research interest due to the increasing emphasis on energy conservation. However, compared to inorganic composite materials, conventional polyimide composite thermal insulation materials do not have a significant advantage in thermal insulation performance. Therefore, developing polyimide-based composite thermal insulation materials with ultra-low thermal conductivity is of great significance. Herein, this article reviews the research progress on polyimide composite thermal insulation materials. It first analyzes the thermal insulation mechanisms and classifies the polyimide composite materials. Then the factors influencing the thermal insulation performance of polyimide composite materials are summarized, especially from the three aspects of polyimide molecular chains, filler types and quantities, as well as forming process. It finally concludes the challenges in current research and provides the prospects for future trends.
|
Published: 25 May 2025
Online: 2025-05-13
|
|
|
|
1 Dixon G, Abdel-Salam T, Kauffmann P. Energy, 2010, 35(3), 1491. 2 Mou P, Wan G, Wu L, et al. Journal of Materials Chemistry A, 2023, 11(8), 4345. 3 Ding R, Yan Q, Xue F, et al. Small, 2023, 19(50), 2304946. 4 International Energy Agency and the United Nations Environment Programme. 2018 Global status report-towards a zero-emission, efficient and resilient buildings and construction sector, International Energy Agency, Paris, 2018. 5 International Energy Agency. Transition to sustainable buildings-strategies and opportunities to 2050, International Energy Agency, Paris, 2013. 6 Ong H C, Mahlia T M I, Masjuki H H. Renewable and Sustainable Energy Reviews, 2011, 15(1), 639. 7 Aditya L, Mahlia T M I, Rismanchi B, et al. Renewable and Sustainable Energy Reviews, 2017, 73, 1352. 8 Xue S, Huang G, Chen Q, et al. Nano-Micro Letters, 2024, 16(1), 1. 9 Ding Y, Hou H, Zhao Y, et al. Progress in Polymer Science, 2016, 61, 67. 10 Liaw D J, Wang K L, Huang Y C, et al. Progress in Polymer Science, 2012, 37(7), 907. 11 Kurabayashi K, Goodson K E. Journal of Applied Physics, 1999, 86(4), 1925. 12 Li M K, Guo Y Q, Ruan K P, et al. Polymer Bulletin, 2023, 36(8), 979 (in Chinese). 李沐坤, 郭永强, 阮坤鹏, 等. 高分子通报, 2023, 36(8), 979. 13 Dri F L, Shang S L, Hector L G, et al. Modelling and Simulation in Materials Science and Engineering, 2014, 22(8), 085012. 14 Pei Y, Chen L, Jeon W, et al. Nature Communications, 2023, 14(1), 8242. 15 Guo J F, Tang G H. International Journal of Heat and Mass Transfer, 2019, 137, 64. 16 Obori M, Suh D, Yamasaki S, et al. Physical Review Applied, 2019, 11(2), 024044. 17 Yan X, Liu C, Gadre C A, et al. Nature, 2021, 589(7840), 65. 18 Zhu G, Xu H, Dufresne A, et al. ACS Sustainable Chemistry & Engineering, 2018, 6(5), 7168. 19 Sen S, Singh A, Bera C, et al. Cellulose, 2022, 29(9), 4805. 20 Tang G H, Bi C, Zhao Y, et al. Energy, 2015, 90, 701. 21 Smith D M, Maskara A, Boes U. Journal of Non-crystalline Solids, 1998, 225, 254. 22 Thapliyal P C, Singh K. Journal of Materials, 2014, 2014(1), 127049. 23 Wang D, Peng Y, Dong J, et al. Composites Communications, 2023, 37, 101429. 24 Wang S, Ding R, Liang G, et al. Advanced Materials, 2024, 36(13), 2313444. 25 Song S, Shi Y, Tan J, et al. Journal of Industrial and Engineering Chemistry, 2022, 109, 404. 26 Shao H, Zhao S, Fei Z, et al. Composites Part B:Engineering, 2023, 266, 111002. 27 Chae H G, Kumar S. Science, 2008, 319(5865), 908. 28 Huang C, Qian X, Yang R. Materials Science and Engineering R, 2018, 132, 1. 29 Ni L, Luo Y, Peng X, et al. Polymer, 2021, 229, 123957. 30 Ni L, Luo Y, Qiu C, et al. Materials Today Physics, 2022, 26, 100720. 31 Wu T T. Study on preparation and properties of polyimide composite aerogel. Ph. D. Thesis, Donghua University, China, 2021 (in Chinese). 吴婷婷. 聚酰亚胺复合气凝胶的制备及性能研究. 博士学位论文, 东华大学, 2021. 32 Zhang H, Fan X, Chen W, et al. Composites Part B:Engineering, 2022, 228, 109405. 33 Li D, Lu Z, Ke Z, et al. Polymer, 2024, 290, 126478. 34 Li B, Jiang S, Yu S, et al. Journal of Sol-Gel Science and Technology, 2018, 88, 386. 35 Losego M D, Grady M E. Nature Materials, 2012, 11(6), 502. 36 Diaz J A, Ye Z, Wu X, et al. Biomacromolecules, 2014, 15(11), 4096. 37 Zhang T, Luo T. The Journal of Physical Chemistry B, 2016, 120(4), 803. 38 Yorifuji D, Ando S. Macromolecules, 2010, 43(18), 7583. 39 Li D, Ke Z, Xu K, et al. Chemical Engineering Journal, 2023, 461, 141722. 40 Dong X, Wan B, Zheng M S, et al. Chemical Engineering Journal, 2023, 465, 143034. 41 Guo H, Meador M A B, Mccorkle L S, et al. RSC Advances, 2016, 6(31), 26055. 42 Meador M A B, Alemán C R, Hanson K, et al. ACS Applied Materials & Interfaces, 2015, 7(2), 1240. 43 Ghanem B S, Swaidan R, Litwiller E, et al. Advanced Materials, 2014, 26(22), 3688. 44 Zheng S, Jiang L, Chang F, et al. ACS Applied Materials & Interfaces, 2022, 14(44), 50129. 45 Zhou H, Jin W. Membranes, 2018, 9(1), 3. 46 Swimm K, Reichenauer G, Vidi S, et al. International Journal of Thermophysics, 2009, 30, 1329. 47 Pollack G L. Reviews of Modern Physics, 1969, 41(1), 48. 48 Yang F, Yao J, Jin L, et al. Composites Part B:Engineering, 2022, 243, 110161. 49 Yao J, Zhou J, Yang F, et al. Nano Research, 2024, 17(4), 3359. 50 Pan Y, Zheng J, Xu Y, et al. Journal of Colloid and Interface Science, 2022, 628, 829. 51 Tian J, Yang Y, Xue T, et al. Journal of Materials Science & Technology, 2022, 105, 194. 52 Yao K, Song C, Fang H, et al. Engineering, 2023, 21, 152. 53 Xiao Z, Che J, Li H, et al. Materials Chemistry Frontiers, 2022, 6(4), 482. 54 Li J, Zhang L, Pang Y, et al. Composites Part A:Applied Science and Manufacturing, 2022, 161, 107112. 55 Zhang T, Zhao Y, Li X, et al. Microporous and Mesoporous Materials, 2021, 319, 111074. 56 Zhou L, Wu L, Wu T, et al. Materials Today Nano, 2023, 22, 100306. 57 Wang L, Feng J, Zhang S, et al. Additive Manufacturing, 2023, 71, 103583. 58 Kargar F, Barani Z, Salgado R, et al. ACS Applied Materials & Interfaces, 2018, 10(43), 37555. 59 Tafreshi O A, Ghaffari-Mosanenzadeh S, Rejeb Z B, et al. Materials Today Sustainability, 2023, 22, 100403. 60 Yang J, Lu J, Xi S, et al. Journal of Materials Chemistry A, 2023, 11(39), 21272. 61 Li N, Shi J F, Zou K K, et al. ACS Applied Materials & Interfaces, 2023, 15(21), 25990. 62 Sun Z, Chen J, Jia X, et al. Materials Today Physics, 2021, 21, 100521. 63 Zhao Y, Chen J, Lai X, et al. Composites Part A:Applied Science and Manufacturing, 2022, 163, 107210. 64 Jiang C, Chen J, Lai X, et al. Chemical Engineering Journal, 2022, 434, 134630. 65 Xue T, Fan W, Zhang X, et al. Composites Part B:Engineering, 2021, 219, 108963. 66 Taki K. Chemical Engineering Science, 2008, 63(14), 3643. 67 Li J W. The research on the preparation of copolymerizedpolyimide foams and their structure and performance. Ph. D. Thesis, Northwestern Polytechnical University, China, 2018 (in Chinese). 李建伟. 共聚型聚酰亚胺泡沫材料的制备及其结构与性能研究. 博士学位论文, 西北工业大学, 2018. 68 Zhao X H, Zhang G C, Zhang Y Z, et al. Synthetic Resins and Plastics, 2008, 25(6), 33 (in Chinese). 赵玺浩, 张广成, 张悦周, 等. 合成树脂及塑料, 2008, 25(6), 33. 69 Li Q, Dong J, Li X T, et al. The Chemical World, 2023, 64(4), 229 (in Chinese). 李强, 董杰, 李琇廷, 等. 化学世界, 2023, 64(4), 229. 70 Xiao H, Lv J, Tan W, et al. Chemical Engineering Journal, 2022, 450, 138344. 71 Hübner C, Vadalà M, Voges K, et al. Scientific Reports, 2023, 13(1), 1020. 72 Liu R, Xu T, Wang C. Ceramics International, 2016, 42(2), 2907. 73 Deville S, Maire E, Lasalle A, et al. Journal of the American Ceramic Society, 2010, 93(9), 2507. 74 Ma S, Wang C, Cong B, et al. Chemical Engineering Journal, 2022, 431, 134047. 75 Yin K, Divakar P, Wegst U G K. Biomacromolecules, 2019, 20(10), 3733. 76 Wang C, Chen X, Wang B, et al. ACS Nano, 2018, 12(6), 5816. 77 Mi A, Guo L, Guo S, et al. Sustainable Materials and Technologies, 2024, 39, e00830. 78 Li M, Gan F, Dong J, et al. ACS Applied Materials & Interfaces, 2021, 13(8), 10416. 79 Xue T, Zhu C, Feng X, et al. Advanced Fiber Materials, 2022, 4(5), 11. |
|
|
|