INORGANIC MATERIALS AND CERAMIC MATRIX COMPOSITES |
|
|
|
|
|
Research Progress on Properties of Polymer Cement-based Composites Modified by Nano-graphene Oxide |
LI Shaofei1,2, WEI Zhiqiang1,2,3,4, QIAO Hongxia1,2,*, CAO Hui1,2, ZHAO Xinyuan1,2, XI Lingling1,2
|
1 School of Civil Engineering, Lanzhou University of Technology, Lanzhou 730050, China 2 Gansu Advanced Civil Engineering Materials Engineering Research Center, Lanzhou 730050, China 3 College of Science, Lanzhou University of Technology, Lanzhou 730050, China 4 State Key Laboratory of Advanced Processing and Recycling of Non-Ferrous Metals, Lanzhou University of Technology, Lanzhou 730050, China |
|
|
Abstract Polymer-modified cement-based materials have the advantages of both organic and inorganic materials such as excellent strength, cohesiveness and water resistance, are widely used as concrete structural repair materials. However, the addition of polymer has some disadvantages such as delaying the hydration of cement, reducing the early mechanical properties of composite, temperature sensitivity and easy aging. As a new nanomaterial, graphene oxide (GO) can greatly improve the macroscopic mechanical properties of cement-based composites by regulating its internal microstructure. This paper reviews the research progress of several common polymers and GO modified cement-based materials, discusses the effects of polymers and GO on the hydration properties, hydration products and mechanical properties of cement-based materials, and summarizes the modification mechanism of the two on cement-based materials. On this basis, the existing problems of polymer and GO modified cement-based materials are summarized. Finally, the use of GO modified polymer cement-based composites is put forward to give full play to the respective advantages of GO and polymer, and the existing problems and application prospects of GO modified polymer cement-based compo-sites are discussed.
|
Published: 25 May 2025
Online: 2025-05-13
|
|
|
|
1 Tong T T, Li Z L, Liu S D, et al. Materials Reports, 2024, 38(7), 130 (in Chinese). 童涛涛, 李宗利, 刘士达, 等. 材料导报, 2024, 38(7), 130. 2 Zhang X F, Peng Z G, Feng Q, et al. Journal of Building Engineering, 2024, 83, 108456. 3 Lei D Y, Li M A, Zhang P, et al. Journal of the Chinese Ceramic Society, 2023, 51(11), 2876 (in Chinese). 雷东移, 李明昂, 张鹏, 等. 硅酸盐学报, 2023, 51(11), 2876. 4 Wei J J, Farzadnia N, Khayat, K H. Construction and Building Materials, 2024, 414, 134566. 5 Sun H, Luo L, Li X, et al. Journal of Building Engineering, 2024, 86, 108804. 6 Yang Z Y, Lu F, Zhan X W, et al. Journal of Building Engineering, 2024, 84, 108688. 7 Song H L, Liu T, Gauvin F. Journal of Materials Research and Technology- JMR&T, 2024, 28, 3121. 8 Xin H P, Guo D G, Pizzi A. Polymers, 2024, 16(2), 204. 9 Chen X M, Wang J, Jiao H Z, et al. Materials, 2023, 16(19), 6475. 10 Wang L S, Cao M, Li X B, et al. Construction and Building Materials, 2023, 401, 132940. 11 Mohanty S, Roy N, Singh S P, et al. Cold Regions Science and Technology, 2021, 191, 103358. 12 Bayat H, Banar R, Nikravan M, et al. Journal of Building Engineering, 2024, 86, 108737. 13 Badalyan M M, Muradyan N G, Shainova R S, et al. Buildings, 2024, 14(3), 757. 14 Xu H T. Study on the properties of polymer modified cement mortar. Master’s Thesis, Zhengzhou University, China, 2009 (in Chinese). 徐洪涛. 聚合物改性水泥砂浆性能研究. 硕士学位论文, 郑州大学, 2009. 15 Ohama Y. Cement and Concrete Composites, 1998, 20(2), 189. 16 Betioli A M, Gleize P J P, John V M, et al. Cement and Concrete Composites, 2011, 34(2), 255. 17 Cai R Z, Qi H, Mao J Z, et al. Journal of Materials in Civil Engineering, 2022, 34(4), 04022012. 18 Zhao H, Deng M, Tang M S. Journal of Thermal Analysis and Calorimetry, 2013, 112(3), 1465. 19 Feng X, Garboczi E J, Bentz D P, et al. Cement and Concrete Research, 2004, 34(10), 1787. 20 Peng Y, Zeng Q, Xu S L, et al. Journal of the American Ceramic Society, 2020, 103(5), 3373. 21 Zhang G F, Wang Y W, Wang P M, et al. Journal of Thermal Analysis and Calorimetry, 2016, 124(3), 1229. 22 Liu Q, Lu Z Y, Hu X S, et al. Journal of Building Engineering, 2021, 42, 103048. 23 Liang G W, Ni D Y, Li H X, et al. Construction and Building Materials, 2021, 272, 121891. 24 Li H X, Gu L N, Dong B Q, et al. Construction and Building Materials, 2020, 262, 120097. 25 Li H X, Xue Z, Liang H, et al. Journal of Building Engineering, 2021, 41, 102780. 26 Kim M O. Applied Sciences-Basel, 2020, 10(3), 1061. 27 Ohama Y. ACI Materials Journal, 1987, 84(6), 511. 28 Van Gemert D, Beeldens A. In:7th Asian Symposium on Polymers in Concrete. Istanbul, 2012, pp.59. 29 Beeldens A, Gemert Van D, Schorn H, et al. Materials and Structures, 2005, 38, 601. 30 Gretz M, Plank J. Cement and Concrete Research, 2010, 41(2), 184. 31 Chuah S, Li W G, Chen S J, et al. Construction and Building Materials, 2018, 161, 519. 32 Amin M A, Kamyar H, Sajjad M, et al. Journal of Materials in Civil Engineering, 2024, 36(3), 04023600. 33 Wang X M, Zhong J. Cement and Concrete Research, 2023, 170, 107189. 34 Liu B, Wang L G, Pan G H, et al. Journal of Building Engineering, 2022, 57. 35 Zhao L, Guo X L, Liu Y Y, et al. Carbon, 2018, 127, 255. 36 Gao Y, Jing H W, Chen S J, et al. Composites Part B-Engineering, 2019, 164, 45. 37 Papanikolaou I, de Souza L R, Litina C, et al. Construction and Building Materials, 2021, 293, 123543. 38 Yan X T, Zheng D P, Yang H B, et al. Construction and Building Materials, 2020, 257, 119477. 39 Wang R Z, Sun R X, Zhao L C, et al. Journal of Building Engineering, 2023, 77, 107447. 40 Lin C Q, Wei W, Hu Y H. Journal of Physics and Chemistry of Solids, 2016, 89, 128. 41 Wang B M, Deng S. Construction and Building Materials, 2019, 228, 116720. 42 Kang X J, Zhu X H, Qian J S, et al. Construction and Building Materials, 2019, 203, 514. 43 Wang L G, Zhang S P, Zheng D P, et al. Nanomaterials, 2017, 7(12), 429. 44 Zheng K, Guo Z H, Cui N, et al. Ceramics-Silikaty, 2020, 64(4), 460. 45 Wang L, Li Q L, Song J W, et al. Powder Technology, 2021, 386, 428. 46 Wang Q, Li S Y, Pan S, et al. Construction and Building Materials, 2019, 198, 106. 47 Li W G, Li X Y, Chen S J, et al. Construction and Building Materials, 2017, 136, 506. 48 Chintalapudi K, Pannem R M R. Journal of Building Engineering, 2020, 32, 101551. 49 Xu G, Du S, He J L, et al. Carbon, 2019, 148, 141. 50 Xu Y D, Li B, Zeng J Q, et al. Ceramics-Silikaty, 2020, 64(3), 310. 51 Meng S Q, Ouyang X W, Fu J Y, et al. Nanotechnology Reviews, 2021, 10(1), 768. 52 Wang Y H, Yang J W, Ouyang D. Materials, 2019, 12(22), 3753. 53 Zhao L, Guo X L, Ge C, et al. Composites Part B-Engineering, 2017, 113, 308. 54 Ho V D, Ng C T, Ozbakkaloglu T, et al. RSC Advances, 2020, 10(70), 42777. 55 Gholampour A, Valizadeh M K, Tran D H, et al. RSC Advances, 2017, 7(87), 55148. 56 Long W J, Wei J J, Xing F, et al. Cement and Concrete Composites, 2018, 93, 127. 57 Wang B M, Jiang R S, Wu Z L. Nanomaterials, 2016, 6(11), 200. 58 Liu J T, Li Q H, Xu S L. Journal of Materials in Civil Engineering, 2019, 31(4), 04019014. 59 Lu Z Y, Li X Y, Hanif A, et al. Construction and Building Materials, 2017, 152, 232. 60 Fonseka I, Mohotti D, Wijesooriya K, et al. Construction and Building Materials, 2023, 404, 133280. 61 Lv S H, Ma Y J, Qiu C C, et al. Magazine of Concrete Research, 2013, 65(20), 1246. 62 Wang M, Wang R M, Yao H, et al. RSC Advances, 2016, 6(68), 63365. 63 Wang M, Wang R M, Yao H, et al. Construction and Building Materials, 2016, 126, 730. 64 Gao Y B, Luo J L, Zhang J G, et al. Nanotechnology Reviews, 2022, 11(1), 1778. 65 Naseem Z, Shamsaei E, Sagoe-Crentsil K, et al. Cement and Concrete Research, 2022, 158, 106843. |
|
|
|