INORGANIC MATERIALS AND CERAMIC MATRIX COMPOSITES |
|
|
|
|
|
Photoelectric Characterization of ZnO:X%Eu Under Different Preparation Conditions |
LIANG Ping1, XIA Ziwen1, FENG Yang1, YANG Weiye1,2, PENG Hongyan1,2, ZHAO Shihua1,2,3,*
|
1 College of Physics and Electronic Engineering, Hainan Normal University, Haikou 571158, China 2 The Innovation Platform for Academicians of Hainan Province, Haikou 571158, China 3 Physics Department, Shangqiu Normal University, Shangqiu 476000, Henan, China |
|
|
Abstract Synthesis of europium (Eu) doped zinc oxide (ZnO) samples was achieved using a hydrothermal method under various preparation conditions. The structural, morphological, and performance characteristics of the samples were characterized and analyzed using XRD, SEM, EDS, Raman, XPS, PL, and I-V techniques. The results indicate that the crystallinity of the 5% europium-doped sample is good, and the powder grains exhibit pinecone-like shapes at different annealing temperatures (600, 800, 1 000 ℃). The actual ratio of europium ions to zinc ions is close to the theoretical value. Raman and XPS spectra show that trivalent europium ions are incorporated into the ZnO lattice, leading to changes in the atomic optical phonon vibration modes of ZnO. The PL spectrum reveals the strongest fluorescence emission at 618 nm, with the optimal doping molar concentration being 5%. The I-V curve demonstrates that the resistivity of undoped zinc oxide powder and ZnO:9%Eu powder in the range of -5 to 5 V is approximately 3.8×1010 Ω·cm and 1.11×109 Ω·cm, respectively. While the resistivity of ZnO:1%Eu and ZnO:5%Eu powders varies within different voltage ranges:in the range of -5 to 0 V, the conductivity shows an approximately linear relationship, with resistivity values of about 1.41×108 and 1.21×108 Ω·cm, respectively; in the range of 0 to 5 V, the conductivity drops to zero. These experimental results reflect the variations in the conductivity mechanism of samples doped with different concentrations of europium, providing valuable insights for the application of materials in optoelectronic devices.
|
Published: 25 May 2025
Online: 2025-05-13
|
|
|
|
1 Niu Q, Xue R, Su J, et al. Materials Sciences and Applications, 2022, 13(12), 587. 2 Yang Lei, Zhou Lifang, Hong Chunshui, et al. Journal of Chemical Physics, 2023, 159, 214703. 3 Karimi M, Sadeghi E, Bigdeli S K, et al. Radiation Physics and Chemistry, 2023, 212, 111132. 4 Amrita Palai, Nihar Ranjan Panda, Dojalisa Sahu. ECS Journal of Solid State Science and Technology, 2023, 12, 076015. 5 Hye Ji Jang, Ju Hyun Yang, Ju Young Maeng, et al. Journal of CO2 Utilization, 2022, 60, 101994. 6 Xu Z, Islam M M, Meitzner R, et al. ACS Applied Materials & Interfaces, 2023, 15, 45146. 7 Temahuki N, Jomard F, Lusson A, et al. Applied Physics Letters, 2021, 118, 102106. 8 Malimabe M A, Dejene B F, Swart H C, et al. Journal Pre-proof, 2020, 1202(1), 127339. 9 Zhang Linli, Ling Yawen, Zhang Ling, et al. Rare Metal Materials And Engineering, 2008, 37(2), 370(in Chinese). 张琳丽, 凌亚文, 张玲, 等. 稀有金属材料与工程, 2008, 37(2), 370. 10 Xin Xianshuang, Zhou Baibin, Lyu Shuchen et al. Acta Physica Sinica, 2005, 54(4), 1859(in Chinese). 辛显双, 周百斌, 吕树臣, 等. 物理学报, 2005, 54(4), 1859. 11 Singh L R. Materials Sciences & Applications, 2015, 6(4), 269. 12 Wang H P. Applied Mechanics & Materials, 2014, 352, 496. 13 Huang Kaijin, Yan Li, Xie Changsheng. Materials Reports, 2010, 24(11), 7(in Chinese). 黄开金, 闫里, 谢长生. 材料导报, 2010, 24(11), 7. 14 Letswalo M L A, Reddy L, Balakrishna A, et al. Materials Today Communications, 2024, 38, 107944. 15 Zhao S R, Liu Z X, Liu J K, et al. Industrial and Engineering Chemistry Research, 2023, 62(2), 1035. 16 Zhao Xu, Jiang Da, Liang Chen, et al. Materials Reports, 2015, 29(25), 17(in Chinese). 赵旭, 姜妲, 梁晨, 等. 材料导报, 2015, 29(25), 17. 17 Xu Ming, Hu Zhigang, Wu Yannan, et al. Materials Reports, 2010, 24(19), 27(in Chinese). 徐明, 胡志刚, 吴艳南, 等. 材料导报, 2010, 24(19), 27. 18 Bian Mingjing, Zhang Hongyan, Zhang Jun, et al. Optik-International Journal for Light and Electron Optics, 2020, 209, 164607. 19 Lyu Baohua, Li Yuzhen, Yao Chenzhong. Chemical Research and Application, 2018, 30(9), 1516(in Chinese). 吕宝华, 李玉珍, 姚陈忠. 化学研究与应用, 2018, 30(9), 1516. 20 Mohamed W S, Abu-Dief A M. The journal of Physics and Chemistry of Solids, 2018, 116, 375. 21 Lang Jihui, Wang Jiaying, Zhang Qi, et al. Materials Science in Semiconductor Processing, 2016, 41, 32. 22 Karimi M, Sadeghi E, Khosravi Bigdeli S, et al. Radiation Physics and Chemistry, 2023, 212, 111132. 23 Marius Millot, Ramon Tena-Zaera, Vicente Munoz-Sanjose, et al. Applied Physics Letters, 2010, 96, 152103. 24 Karpyna V, Ievtushenko A, Kolomys O, et al. Physica Status Solidi (B), 2020, 257(6), 67. 25 Zhang Yongzhe, Liu Yanping, Wu Lihui, et al. Journal of Physics D-Applied Physics, 2009, 42, 085106. 26 She Yajuan. Synthesis and optical characteristic studies of rare-earth doped ZnO nanoparticles. Master’s Thesis, Hunan University, China, 2014 (in Chinese). 佘亚娟. 稀土掺杂ZnO纳米颗粒的制备及光学性能研究. 硕士学位论文, 湖南大学, 2013. 27 Wang Qing’e. Study on doping characteristics of nanostructured ZnO. Master’s Thesis, Yantai University, China, 2018(in Chinese). 王庆娥. 纳米结构氧化锌的掺杂特性研究. 硕士学位论文, 烟台大学, 2018. 28 Sutar D S, Kushwaha N, Appani S K, et al. Journal of Electron Spectroscopy and Related Phenomena, 2020, 243(1), 18. 29 Qi Kezhen, Xing Xiaohan, Amir Zada, et al. Ceramics International, 2019, 46, 1494. 30 Zhou Xiaoguang. Journal of Jilin Normal University (Natural Science Edition), 2012(3), 50(in Chinese). 周晓光. 吉林师范大学学报 (自然科学版), 2012(3), 50. 31 Sun Xiaoqi, Meng Qinghua, Meng Qingyun. Chinese Journal of Luminescence, 2013, 34(5), 573. 孙晓绮, 孟庆华, 孟庆云. 发光学报, 2013, 34(5), 573. 32 Nataliya Babayevska, Igor Iatsunskyi, Patryk Florczak, et al. Ecological restoration, 2020, 38(1), 31. 33 Du Dan, Li Jin, Ai Fengwei, et al. Applied Chemical Industry, 2016, 45(10), 1856(in Chinese). 杜丹, 李瑾, 艾凤伟, 等. 应用化工, 2016, 45(10), 1856. 34 Yuan Guimei, Zhou Ruipeng, Feng Xinyi, et al. Applied Chemical Industry, 2021, 50(5), 1159. 袁桂梅, 周睿鹏, 封心怡, 等. 应用化工, 2021, 50(5), 1159. 35 Guo Deshuang, Chen Zinan, Wang Dengkui, et al. Chinese Journal of Lasers, 2016, 46 (4), 0403002-1(in Chinese). 郭德双, 陈子男, 王登魁, 等. 中国激光, 2016, 46 (4), 0403002-1. 36 Zhao Shihua, Shu Fangjie, Li Yanmin, et al. Journal of Nanoscience and Nanotechnology, 2012, 12(3), 2607. 37 Zhao Shihua, Du Xuelian, Cui Yuting, et al. Journal of Nanoscience and Nanotechnology, 2014, 14(5), 3953. 38 Li Peng, Zhang Hongyan, Li Zhijun, et al. Optoelectronics Letters, 2020, 16 (4), 11. 39 Zhao Kaiping. Journal of Xiangfan University, 2007(2), 20(in Chinese). 赵开屏. 襄樊学院学报, 2007(2), 20. 40 Li Meng, Sun Lianfeng, Qiao Lijie. Journal of Chinese Electron Microscopy Society, 2006, 25(4), 320(in Chinese). 李萌, 孙连峰, 乔利杰. 电子显微学报, 2006, 25(4), 320. |
|
|
|