POLYMERS AND POLYMER MATRIX COMPOSITES |
|
|
|
|
|
Research on High Temperature Energy Storage Characteristics of Al2O3/PEI Dielectric Composites |
MENG Lingxin1, DENG Wei1,2,*, HU Siyuan1, FENG Jiawei1, WANG Zhaopan1
|
1 School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, China 2 Key Laboratory of Engineering Dielectrics and Its Application, Ministry of Education, Harbin University of Science and Technology, Harbin 150080, China |
|
|
Abstract High temperature energy storage dielectric materials are of great significance for improving the capacity and reliability of electronic and power equipment, as well as reducing their volume. In this work, aluminum oxide/polyether imide (Al2O3/PEI) composite films were obtained via solution blending and casting method using high-temperature resistant PEI as the matrix and Al2O3 with wide bandgap as the fillers. The effects of alumina nanoparticles (AO NPs) and electrospun alumina nanofibers (AO NFs) on the dielectric energy storage characteristics of the composite films were studied comparatively. The results show that Al2O3 can improve polarization and breakdown strength simultaneously, as well as decrease conductivity. Compared with AO NPs, AO NFs are more evenly dispersed in the PEI matrix, thus obtaining high energy storage Al2O3/PEI composite films at extremely low filler content. When the filler content is 0.50%, the energy storage density of AO NFs/PEI at 25 ℃ reaches 5.80 J/cm3, which is 1.2 and 2.5 times higher than that of 0.50AO NPs/PEI and pure PEI films, respectively. Furthermore, 0.50AO NFs/PEI composite films still exhibit excellent energy storage characteristics at 150 ℃, with energy storage density and charge discharge efficiency of 4.36 J/cm3 and 75%, respectively.
|
Published: 25 November 2024
Online: 2024-11-22
|
|
Fund:Natural Science Foundation of Heilongjiang Province (LH2019E059) and theNational Natural Science Foundation of China (U20A20307). |
|
|
1 Diao C, Wang H, Wang B, et al. Journal of Materials Science:Materials in Electronics, 2022, 33(27), 21199. 2 Yang Z, Yue D, Yao Y, et al. Polymers, 2022, 14(6), 1160. 3 Hao X. Journal of Advanced Dielectrics, 2013, 3(1), 1330001. 4 Shen Y, Zhang X, Li M, et al. National Science Review, 2017, 4(1), 23. 5 Li Q, Li M X. High Voltage Engineering, 2021, 47(9), 3105 (in Chinese). 李琦, 李曼茜. 高电压技术, 2021, 47(9), 3105. 6 Li Q, Yao F Z, Liu Y, et al. Annual Review of Materials Research, 2018, 48, 219. 7 Liu W F, Liu B, Cheng L. High Voltage Engineering, 2023, 49(3), 1046 (in Chinese). 刘文凤, 刘标, 程璐. 高电压技术, 2023, 49(3), 1046. 8 Wang P. Material of linear polymer and its composite dielectric energy storage performance study on high temperature. Master's Thesis, Hangzhou Dianzi University, China, 2022 (in Chinese). 王萍. 线性聚合物及其复合材料的高温介电储能性能研究. 硕士学位论文, 杭州电子科技大学, 2022. 9 Zhou Y, Li Q, Dang B, et al. Advanced Materials, 2018, 30(49), 1805672. 10 Zhang T D, Yang L Y, Zhang H C, et al. Proceedings of the CSEE, 2021, 41(5), 1526 (in Chinese). 张天栋, 杨连印, 张昌海, 等. 中国电机工程学报, 2021, 41(5), 1526. 11 Yang M, Ren W, Guo M, et al. Small, 2022, 18(50), 2205247. 12 Miao W, Chen H, Pan Z, et al. Composites Science and Technology, 2021, 201, 108501. 13 Ni X, Lin J, Yuan Y, et al. ACS Applied Nano Materials, 2023, 6(13), 12588. 14 Ren L, Yang L, Zhang S, et al. Composites Science and Technology, 2021, 201, 108528. 15 Yan J, Wang J, Zeng J, et al. Journal of Materials Chemistry C, 2022, 10(36), 13157. 16 Zhu L, Zhang Y, Xu W, et al. Composites Science and Technology, 2022, 223, 109421. 17 Zhang C S, Zhao F, Zhang J J, et al. Acta Chimica Sinica, 1999(3), 275 (in Chinese). 张长拴, 赵峰, 张继军, 等. 化学学报, 1999(3), 275. 18 Shang H, Ye P F, Yan H Z, et al. Vacuum Electronics, 2018(1), 33 (in Chinese). 商辉, 叶鹏飞, 闫洪振, 等. 真空电子技术, 2018(1), 33. 19 Rodaev V V, Zhigachev A O, Golovin Y I. Ceramics International, 2017, 43(17), 16023. 20 Tobin J S, Turinske A J, Stojilovic N, et al. Current Applied Physics, 2012, 12(3), 919. 21 Su Y, Weng L, Wang X M, et al. Materials Reports, 2023, 37(11), 194 (in Chinese). 苏宇, 翁凌, 王小明, 等. 材料导报, 2023, 37(11), 194. 22 Fan Z, Zhang Y, Jiang Y, et al. Journal of Materials Research and Technology, 2022, 18, 4367. 23 Fan M, Hu P, Dan Z, et al. Journal of Materials Chemistry A, 2020, 8(46), 24536. 24 Li H, Ai D, Ren L, et al. Advanced Materials, 2019, 31(23), 1900875. 25 Ai D, Li H, Zhou Y, et al. Advanced Energy Materials, 2020, 10(16), 1903881. 26 Li H, Ren L, Ai D, et al. InfoMat, 2020, 2(2), 389. 27 Zhang T, Yang L, Ruan J, et al. Macromolecular Materials and Engineering, 2021, 306(12), 2100514. 28 Li X, Luo H, Yang C, et al. ACS Applied Materials & Interfaces, 2023, 15(35), 41828. 29 Ding X, Pan Z, Zhang Y, et al. Advanced Materials Interfaces, 2022, 9(28), 2201100. 30 Ren W, Pan J, Dan Z, et al. Chemical Engineering Journal, 2021, 420, 127614. 31 Fan M Z, Sun B Z, Jiang J Y, et al. Rare Metals, 2023, 42(6), 1912. 32 Feng Y, Zhou Y, Zhang T, et al. Energy Storage Materials, 2020, 25, 180. |
|
|
|