METALS AND METAL MATRIX COMPOSITES |
|
|
|
|
|
Microstructure, Processing Properties and Plastic Deformation Behavior of an Extruded Mg-Y-Ni-Co Alloy |
BI Guangli1,2,*, RAN Jishang1,2, MAN Hongsheng3, JIANG Jing1,2, MENG Shuaiju1,2, BI Guangkuo4, WANG Haidong5, LI Yuandong1,2
|
1 State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals, Lanzhou University of Technology, Lanzhou 730050, China 2 School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China 3 Jinchuan Group Precision Copper Co., Ltd., Jinchang 737100, Gansu, China 4 Jilin Jianlong Iron & Steel Co., Ltd., Jilin 132000, Jilin, China 5 School of Applied Technology, Changchun Institute of Technology, Changchun 130012, China |
|
|
Abstract The microstructure, processing properties and plastic deformation behavior of an extruded Mg-2Y-0.5Ni-0.5Co (at%) alloy were investigated by optical microscopy (OM), X-ray diffractometer (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and universal experiment machine. The microstructure of the extruded alloy mainly consisted of α-Mg, lamellar and blocky 18R-LPSO phase distributed along the extrusion direction, MgY(Co,Ni)4 phase, and fine strip-like 14H-LPSO phase in the grain interior. Tensile test results showed that the extruded alloy had good room temperature plasticity and its elongation to failure was higher than 15%. With increasing temperature and decreasing strain rate, the tensile strengths of the alloy decreased, while the plasticity increased. The alloy exhibited quasi-super plasticity with elongation to failure of 117.87% and 143.9% at 300 ℃ under the strain rates of 1×10-4 s-3 and 1×10-4 s-1, respectively. The constructed thermal processing profile was optimized for the stable processing interval of the extruded alloy: 275—300 ℃ with strain rates from 1×10-4 s-1 to 1×10-3 s-1. The deformation behavior of the extruded alloy varied with temperature and strain rate. At low temperatures (RT—200 ℃) and different strain rates, the deformation mechanism of the alloy was dominated by dislocation slip. At high temperature (300 ℃) and low strain rates (1×10-4 s-1 and 1×10-3 s-1), the deformation mechanism of the alloy was dislocation slip coordinated by grain boundary slip.
|
Published: 10 November 2024
Online: 2024-11-11
|
|
Fund:National Natural Science Foundation of China (52261027, 51961021, 52001152), Open Project of State Key Laboratory of Mechanical Behavior of Materials (20192102), Undergraduate Innovation and Entrepreneurship Training Program (DC2022017, DC2022025, DC2022027). |
|
|
1 Chaman-Ara M, Ebrahimi G R, Ezatpour H R. The Chinese Journal of Nonferrous Metals, 2018, 28(4), 629. 2 Wang J, Zhu G M, Wang L Y, et al. Journal of Materials Science & Technology, 2021, 84(25), 27. 3 Somekawa H, Kinoshita A, Kato A. Materials Science & Engineering A, 2018, 732, 21. 4 Janik V, Yin D D, Wang Q D, et al. Materials Science & Engineering A, 2011, 528(7-8), 3105. 5 Liu X B, Chen R S, Han E H. Journal of Alloys and Compounds, 2008,465(1-2), 232. 6 Lin L, Chen L J, Liu Z. Journal of Materials Science, 2008, 43(13), 4493. 7 Luo Z P, Zhang S Q, Tang Y L, et al. Journal of Alloys and Compounds, 1994, 209(1-2), 275. 8 Inoue A, Kawaura Y, Matsushita M, et al. Journal of Materials Research, 2001, 16(07), 1894. 9 Bi G L, Zhang N M, Jiang J, et al. The Chinese Journal of Nonferrous Metals, 2022, 32(3), 731 (in Chinese). 毕广利, 张妞明, 姜静, 等. 中国有色金属学报, 2022, 32(3), 731. 10 Itoi T, Takahashi K, Moryama H, et al. Scripta Materialia, 2008, 59(10), 1155. 11 Tong L B, Li X H, Zhang H J. Materials Science & Engineering A, 2013, 563, 177. 12 Mi S B, Jin Q Q. Scripta Materialia, 2013, 68(8), 635. 13 Wang L S, Jiang J H, Saleh B, et al. Acta Metallurgica Sinica(English Letters), 2020, 33(9),1180. 14 Alok S, Somekawa H, Mukai T. Materials Science & Engineering A, 2011, 528(21), 6647. 15 Akihisa I, Yoshihito K, Mitsuhide M, et al. Journal of Materials Research, 2001, 16(7), 1894. 16 Jin S, Zhang D, Lu X P, et al. Journal of Materials Science & Technology, 2020, 47, 190. 17 Wang J F, Gao S Q, Liu X Y, et al. Journal of Magnesium and Alloys, 2020, 8(1), 127. 18 Zhou Y C, Luo Q, Jiang B, et al. Scripta Materialia, 2022, 208, 114345. 19 Zhang R Q, Wang J F, Huang S, et al. Journal of Magnesium and Alloys, 2017, 5(3), 355. 20 Wu S Z, Chi Y Q, Xie W C, et al. Materials Science & Engineering A, 2022, 846, 143292. 21 Liu C, Yang X H, Peng J C, et al. Scripta Materialia, 2023, 226, 115264. 22 Peng Z Z, Jin Q Q, Shao X H, et al. Materials Characterization, 2019, 151,553. 23 Shi B Q, Zhao L Y, Chen D C, et al. Materials Science & Engineering A, 2019, 772,138786. 24 Xu Z M, Chen X R, Yao B, et al. JOM, 2019, 71(11), 4125. 25 Bi G L, Wang Y S, Jiang J, et al.Journal of Alloys and Compounds, 2021, 881, 160577. 26 Bi G L, Man H S, Jiang J, et al.Journal of Materials Research and Technology, 2022, 20, 590. 27 Bi G L, Man H S, Jiang J, et al. The Chinese Journal of Nonferrous Metals, 2023, 33(4), 1011(in Chinese). 毕广利, 满宏生, 姜静, 等.中国有色金属学报, 2023, 33(4), 1011. 28 Jin Q Q, Mi S B. Journal of Alloys and Compounds, 2014, 582, 130. 29 Jiang M, Zhang S, Bi Y D, et al. Intermetallics, 2015, 57, 127. 30 Yu L P, Chen X, Wang S H, et al. Journal of Materials Research, 2019, 34(20), 3545. 31 Hagihara K, Kinoshita A, Sugino Y, et al. Acta Materialia,2010, 58(19), 6282. 32 He S Y, Yang S Y. Chinese Journal of Rare Metals, 2021, 45(3), 257(in Chinese). 何舒阳, 杨素媛.稀有金属, 2021, 45(3), 257. 33 Zhu S M, Nie J F. Scripta Materialia, 2004, 50(1), 51. 34 Chapuis A, Liu Q. Journal of Magnesium and Alloys, 2019, 7(3), 433. 35 Jain V, Mishra R S, Gouthama. Journal of Materials Science, 2012, 48(6), 2635. 36 Alizadeh R, Mahmudi R, Ngan A H W, et al. Materials Science & Engineering A, 2016, 651, 786. 37 Kwak T Y, Kim W J. Journal of Materials Science & Technology, 2017, 33(9), 919. 38 Kula A, Jia X, Mishra R K, et al. International Journal of Plasticity, 2017, 92, 96. 39 Mcqueen H J, Ryan N D. Materials Science & Engineering A, 2002, 322(1), 43. 40 Langdon T G. Acta Metallurgica et Materialia, 1994, 42(7), 2437. 41 Jung I H, Sanjrai M, Kim J, et al. Scripta Materialia, 2015, 102, 1. 42 Prasad Y, Gegel H L, Doraivelu S M, et al. Metallurgical Transactions A, 1984, 15(10), 1883. 43 Murty S V S N, Rao B N, Kashyap B P. Journal of Materials Science, 2002, 37(6),1197. |
|
|
|