INORGANIC MATERIALS AND CERAMIC MATRIX COMPOSITES |
|
|
|
|
|
Research Progress of High Crystallinity g-C3N4 in Photocatalysis |
XU Yang1,2, LIU Chengbao1,2,3,*, ZHENG Leizhi1,2,3, CHEN Feng1,2,3, QIAN Junchao1,2,3, QIU Yongbin4, MENG Xianrong5, CHEN Zhigang1,2,3
|
1 Jiangsu Key Laboratory for Environment Functional Materials, Suzhou University of Science and Technology, Suzhou 215009, Jiangsu, China 2 School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, Jiangsu, China 3 Jiangsu Collaborative Innovation Center of Technology and Material for Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, Jiangsu, China 4 Jiangsu Province Ceramics Research Institute Co., Ltd.,Yixing 214221, Jiangsu, China 5 Suzhou Institute of Environmental Science, Suzhou 215007, Jiangsu, China |
|
|
Abstract Graphite phase carbon nitride (g-C3N4), a polymer semiconductor with a typical two-dimensional layered structure and narrow band gap, has excellent visible light absorption capacity, stable physical and chemical properties and good photocatalytic properties. However, the structure of g-C3N4 produced by the heat-induced polymerization from traditional nitrogen-containing precursor is incomplete. The main body is melon-based carbon nitride with amorphous or semi-crystalline structure. There are many defects in its phase and surface, which lead to lower conductivity, higher electron-hole pairs recombination rate, resulting in lower catalytic activity. Therefore, it is necessary to improve the crystallinity of g-C3N4. This paper mainly summarizes the advantages of high crystalline carbon nitride (CCN) and the research progress in recent years. Increasing the crystallinity of g-C3N4 can provide charge transfer channels between the conjugated planes to improve the charge transfer efficiency, and also introduce other modification methods to achieve efficient synergies. Then, the structure, characterization, preparation, modification strategy and application fields of CCN in recent years were reviewed. Finally, the challenges and future development directions of CCN photocatalysts are summarized briefly.
|
Published: 10 November 2024
Online: 2024-11-11
|
|
Fund:Natural Science Foundation of Jiangsu Province (BK20180103,BK20180971), Suzhou Science and Technology Deve-lopment Plan Project (SS202036). |
|
|
1 Zhang Y, Wu L L, Zhao X Y, et al. Advanced Energy Materials, 2018, 8 (25), 1801139. 2 Lin F, Zhou S, Wang G H, et al. Nano Energy, 2022, 99, 107432. 3 Peiris S, de Silva H B, Ranasinghe K N, et al. Journal of the Chinese Chemical Society, 2021, 68(5),738. 4 Tang C S, Cheng M, Lai C, et al. Coordination Chemistry Reviews, 2023, 474, 214846. 5 Fujishima A, Honda K. Nature, 1972, 283(5358), 37. 6 Le Pivert M, Martin N, Leprince Wang Y. Crystals, 2022, 12(3), 308. 7 Zhou P, Zhang Q H, Xu, Z K, et al. Advanced Materials, 2019, 32(7), 1904249. 8 Jayaramulu K, Mukherjee S, Morales D M, et al. Chemical Reviews, 2022, 122(24), 17241. 9 Luo N, Chen C, Yang D M, et al. Applied Catalysis B-Environmental, 2021, 299, 120664. 10 Liu Z D, Ma J l, Hong M, et al. ACS Catalysis, 2023, 13, 2106. 11 Li Y X, He R C, Han P, et al. Applied Catalysis B-Environmental. 2020, 279, 119379. 12 Liu Y, Han J, Zeng X P, et al. Chemistryselect, 2022, (7)3, e202103884. 13 Wang X C, Maeda K, Thomas A, et al. Nature Materials, 2009, 8(1),76. 14 Yu Y T, Huang H W. Chemical Engineering Journal, 2023, 453, 139755. 15 Zheng Y, Liu J, Liang J, et al. Energy & Environmental Science, 2012, 5(5),6717. 16 Lin L H, Ou H H, Zhang Y F, et al. ACS Catalysis, 2016, 6(6),3921. 17 Yan B, Chen Z G, Xu Y X. Chemistry-An Asian Journal, 2020, 15(15),2329. 18 Li Y, Gong F, Zhou Q, et al. Applied Catalysis B-Environmental, 2020, 268, 118381. 19 He W, Liu Li, Ma T T, et al. Applied Catalysis B-Environmental, 2022, 306, 121107. 20 Liu X M, Wang J, Wu D, et al. Applied Catalysis B-Environmental, 2022, 310, 121304. 21 Zeng F, Huang W Q, Xiao J H, et al. Journal Of Physics D-Applied Physics, 2019, 52(2), 025501. 22 Li Y Y, Zhou B X, Zhang H W, et al. Nanoscale, 2019, 11(14),6876. 23 Li J M, Li J, Wu C C, et al. Carbon, 2021, 179,387. 24 Li J X, Wang Y H, Li X C, et al. Journal of Alloys and Compounds, 2021, 881,160551. 25 Li Y, Zhang D N, Feng X H, et al. Chinese Journal of Catalysis, 2020, 41 (1),21. 26 Lin L H, Yu Z Y, Wang X C. Angewandte Chemie-International Edition, 2019, 58(19),6164. 27 Wirnhier E, Doeblinger M, Gunzelmann D, et al. Chemistry-A European Journal, 2011, 17 (11),3213. 28 Wang W B, Shu Z, Zhou J, et al. ACS Applied Materials & Interfaces, 2022, 14(36),41131. 29 Zhao Z l, Shu Z, Zhou J, et al. Journal of Alloys and Compounds, 2023, 938, 168484. 30 Gu Z Y, Cui Z T, Wang Z J, et al. Journal of Materials Science & Technology, 2021, 83,113. 31 Sundermeyer W. Angewandte Chemie-International Edition, 1965, 4 (3),222. 32 Sundermeyer W. Angewandte Chemie-International Edition, 1967, 6(1),90. 33 Zhao B B, Gao D D, Liu Y P, et al. Journal of Colloid and Interface Science, 2022, 608, 1268. 34 Li Y, Zhang D N, Fan J J, et al. Chinese Journal of Catalysis, 2021, 42 (4), 627. 35 Zhang L, Li L J, Zhao C, et al. Solid State Communications, 2022, 354, 114915. 36 Li Y, Wang B B, Xiang Q J, et al. Dalton Transactions, 2022, 51 (43),16527. 37 Suter T, Brazdova V, McColl K, et al. Journal of Physical Chemistry C, 2018, 122(44),25183. 38 Zhang M L, Yang L, Wang Y J, et al. Applied Surface Science, 2019, 489,631. 39 Bojdys M J, Mueller J O, Antonietti M, et al. Chemistry-A European Journal, 2008, 14 (27),8177. 40 Song J, Liu X L, Zhang C Y, et al. Materials Today Communications, 2022, 33, 104431. 41 Xie Y D, Kocaefe D, Chen, C Y, et al. Journal of Nanomaterials, 2016, 2016, 2302595. 42 Lin B, Chen S, Dong F, et al. Nanoscale, 2017, 9 (16),5273. 43 Liang Z W, Zhuang X J, Tang Z C, et al. Journal of Materials Chemistry A, 2021, 9 (11),6805. 44 Suchitra S M, Udayashankar N K. Materials Research Express, 2017, 4 (12), 124001. 45 Si Y S, Sun Z Z, Huang L M, et al. Journal of Materials Chemistry A, 2019, 7 (15),8952. 46 Xu Y S, He X, Zhong H, et al. Applied Catalysis B-Environmental, 2019, 246,349. 47 Wu X H, Ma H Q, Zhong W, et al. Applied Catalysis B-Environmental, 2020, 271, 118899. 48 Srinivasan K V, Chaskar P K, Dighe S N, et al. Heterocycles, 2011, 83(11),2451. 49 Yuan Y P, Yin L S, Cao S W, et al. Green Chemistry, 2014, 16 (11),4663. 50 Yua Y Z, Wang J G. Ceramics International, 2016, 42(3),4063. 51 Annis J W, Fisher J M, Thompsett D, et al. Inorganics, 2021, 9(6), 40. 52 Hu C C, Wang M S, Hung W Z. Chemical Engineering Science, 2017, 167,1. 53 Xia P F, Antonietti M, Zhu B C, et al. Advanced Functional Materials, 2019, 29 (15), 1900093. 54 Cui L F, Fang Z R, Liu Y F, et al. Inorganic Chemistry Frontiers, 2019, 6 (5) 1304. 55 Bai X J, Wang X Y, Lu X W, et al. Crystengcomm, 2021, 23 (6),1366. 56 Yang Z T, Li L L, Yu H Y, et al. Chemosphere, 2021, 271, 129503. 57 Kang S F, Zhang L, He M F, et al. Carbon, 2018, 137,19. 58 Zhang G G, Lin L H, Li G S, et al. Angewandte Chemie-International Edition, 2018, 57 (30),9372. 59 Bhunia M K, Yamauchi K, Takanabe K. Angewandte Chemie-Internatio-nal Edition, 2014, 53 (41),11001. 60 Zhang G Q, Xu Y S, He C X, et al. Applied Catalysis B-Environmental, 2021, 283, 119636. 61 Li H, Zhu B C, Cao S W, et al. Chemical Communications, 2020, 56 (42),5641. 62 Huang J J, Du J M, Du H W, et al. Acta Physico-Chimica Sinica, 2020, 36 (7), UNSP 1905056 (in Chinese). 黄娟娟, 杜建梅, 杜海威, 等. 物理化学学报, 2020, 36 (7), UNSP 1905056. 63 Wang L Y, Hou Y W, Xiao S S, et al. RSC Advances, 2019, 9 (67),39304. 64 Jin A L, Liu X, Li M R, et al. ACS Sustainable Chemistry & Enginee-ring, 2019, 7 (5),5122. 65 Dou Q, Hou J H, Hussain A, et al. Journal of Colloid And Interface Science, 2022, 624,79. 66 Xia Y, Tian Z H, Heil T, et al. Joule, 2019, 3 (11),2792. 67 Ong W J, Shak K P Y. Solar Rrl. 2020, 4 (8), 2000132. 68 Xu Z, Shi Y X, Li L L, et al. Journal of Alloys and Compounds, 2022, 895, 162667. 69 Yang T Y, Shao Y Y, Hu J D, et al. Chemical Engineering Journal, 2022, 448, 137613. 70 Wang L, Cui D D, Ren L, et al. Journal of Materials Chemistry A, 2019, 7 (22),13629. 71 Shi Y X, Li L L, Xu Z, et al. Materials Research Bulletin, 2022, 150, 111789. 72 Wen J Q, Xie J, Chen X B, et al. Applied Surface Science, 2017, 391,72. 73 Yang F Y, Qu, J F, Zheng, Y, Cai, et al. Nanoscale, 2022, 14 (41),15217. 74 Lin Y, Wang X X, Fu X Z, et al. Journal of Materials Chemistry A, 2022, 10(15),8252. 75 Shen S H, Chen J, Wang Y Q, et al. Science Bulletin, 2022, 67 (5),520. 76 Wang H, Bian Y R, Hu J T, et al. Applied Catalysis B-Environmental, 2018, 238,592. 77 Zhai B Y, Li H G, Gao G Y, et al. Advanced Functional Materials, 2022, 32 (47), 2207375. 78 Mohd Hatta M H, Lintang H O, Lee S L,et al. Turkish Journal of Che-mistry, 2019, 43(1),63. 79 Li Y, Li B H, Zhang D N, Cheng L, et al. ACS Nano, 2020, 14 (8),10552. 80 Cheng L, Zhang P, Wen Q Y, et al. Chinese Journal of Catalysis, 2022, 43 (2),451. 81 Sun K, Wang Y, Chang C S, et al. Chemical Engineering Journal, 2021, 425, 131591. 82 Du J Y, Fan Y F, Gan X R, et al. Electrochimica Acta, 2020, 330, 135336. |
|
|
|