POLYMERS AND POLYMER MATRIX COMPOSITES |
|
|
|
|
|
Microstructural Evolution and Magneto Sensitive Behavior of Magnetorheological Gel Based on Microfluidic System |
GAN Ruyi, FU Jie*, QI Song, YU Miao
|
Key Lab for Optoelectronic Technology and Systems, Ministry of Education, College of Optoelectronic Engineering, Chongqing University, Chongqing, 400044, China |
|
|
Abstract As an important member of magnetic-controlled intelligent materials, magnetorheological gel (MRG) have an important application prospect and potential in the field of large vibration reduction and mitigation due to its excellent damping and small settling characteristics. However, traditional macroscopic methods are difficult to explain the mechanism between microstructures and macroscopic mechanical properties. Hence, it is of great significance to visually characterize the evolution of microstructures and reveal the magneto-mechanical coupling mechanism of materials under multiple fields. Therefore, in this work, the microfluidic measurement system is used to study the microstructures evolution and magneto-sensitive behavior of MRG, and predict the macroscopic mechanical properties of the material in the tube under multi-field coupling. Meanwhile, through qualitative observation and quantitative analysis of MRG microstructures at different velocities and magnetic flux densities, the statistical laws of MRG microstructure evolution and magneto-sensitive behavior under multi-field coupling are elaborated.
|
Published: 10 November 2024
Online: 2024-11-11
|
|
Fund:National Natural Science Foundation of China(51875056,12372146). |
|
|
1 Li S Q, Li Y C, Li J C. Composites Science and Technology, 2021, 214, 108996. 2 Yang P A, Yu M, Fu J. Journal of Nanoparticle Research, 2016, 18(3), 61 2016. 3 Zhang G, Wang H X, Wang J. Journal of Vibration and Shock, 2019, 38(20), 172(in Chinese). 张广, 汪辉兴, 王炅.振动与冲击, 2019, 38(20), 172. 4 Hu Z D, Zhao H J, Wang D W. Materials Reports, 2019, 33(S2), 630(in Chinese). 胡志德, 赵湖钧, 王大伟.材料导报, 2019, 33(S2), 630. 5 Mohamad N, Mazlan S A, Choi S B, et al. Smart Materials and Structures, 2016, 25(9), 095043. 6 Haider A, Shahbaz H. JAMA Surgery, 2021, 156(8), 738. 7 Woo D, Choi S B, Choi Y T, et al. Journal of Intelligent Material Systems and Structures, 2007, 18(12), 1211. 8 Lv J C, Zhang J P, Wu M Y, et al. Advanced Energy Materials, 2022, 24(9), 2101602. 9 Dohmen E, Borin D. Smart Materials and Structures, 2021, 31(2), 025016. 10 Cheng H, Lim T, Kim S, et al. Materials Research Letters, 2022, 10(5), 310. 11 Li X L, Zheng L L. Optical Instruments, 2022, 44(2), 79(in Chinese), 李小龙, 郑璐璐. 光学仪器, 2022, 44(2), 79. 12 Mashaghi S, Abbaspourrad A, Weitz D A, et al. Trac-Trends in Analytical Chemistry, 2016, 82, 118. 13 Khater A, Abdelrehim O, Mohammadi M, et al. Trac-Trends in Analytical Chemistry, 2021, 138, 116234. 14 White A M, ZhangY T, Shamul J G, et al. Small, 2021, 17(23), 2100491. 15 Filippi M, Buchner T, Yasa O, et al. Advanced Materials, 2022, 34(23), 2108427. 16 Yi C J, Peng X H, Zhao C W. Rheologica Acta, 2010, 49(8), 815. 17 Abdi H, Soheilian R, Erb R M, et al. Physical Review E, 2018, 97(3), 032601. 18 Guo C W, Chen F, Meng Q R, et al. Journal of Magnetism and Magnetic Materials, 2014, 360, 174. 19 Xu F H, Xu Z D, Zhang X C,et al. Journal of Vibration and Acoustics, 2016, 138(1), 011017. 20 Pei P, Peng Y B. Materials Reports, 2021, 35(12), 12001(in Chinese). 裴培, 彭勇波.材料导报. 2021, 35(12), 12001. 21 Yu H J, Wang S Y, Wu W W, et al. Signal Process, 2021, 180, 107871. 22 Li H T, Peng X H. Journal of Chongqing University, 2010, 33(5), 100(in Chinese), 李海涛, 彭向和.重庆大学学报, 2010, 33(5), 100, 23 Pang H M, Pei L, Sun C L. Journal of Rheology, 2018, 62(6), 1409. 24 Martin J E, Venturini E, Odinek J. Physical Review E, 2000, 61(3), 2818. |
|
|
|