METALS AND METAL MATRIX COMPOSITES |
|
|
|
|
|
Research Progress on Long Period Stacking Ordered Phase in Magnesium-Lithium Alloys |
DUAN Yifei1, WANG Jianli1,*, YUAN Man2, WANG Liying1,3, YANG Zhong1, LI Fei1, TIAN Hao1
|
1 School of Materials and Chemical Engineering, Xi’an Technological University, Xi’an 710021, China 2 CSIC No.12 Research Institute, Xingping 713102, Shaanxi, China 3 Xi’an Tianli Metal Composite Material Co., Ltd., Xi’an 710299, China |
|
|
Abstract Compared with other metal structural materials, magnesium-lithium alloys, which are known as ultra-light materials, exhibit excellent properties such as ultra-low density, high plasticity, high specific strength, high specific stiffness and good damping performance, and are ideal materials urgently needed in high-end manufacturing fields such as aerospace and weapons and equipment that are extremely sensitive to mass density. However, the low absolute strength, significant decrease in strength due to the over-aging of strengthening phases severely restricts the multi-scenario and large-scale applications. In recent years, the long period stacking ordered phase (LPSO phase) discovered in Mg-RE-TM alloy demonstrates high strength and thermal stability, which can effectively improve the strength, plasticity and creep resistance of magnesium alloys, as well as the corrosion resistance, electromagnetic shielding and damping coefficient. It provides new ideas for strengthening and toughening Mg-Li as well as the research and development of functional structural materials. On the basis of a brief summary of the structure types and formation mechanisms of LPSO phases, this article reviews the current research progress on microstructure and properties of magnesium-lithium alloys containing LPSO phase at home and abroad, and points out the key development directions of future research work. This review can help to improve the development and performance regulation of new types of magnesium-lithium alloys containing LPSO phase.
|
Published: 25 October 2024
Online: 2024-11-05
|
|
Fund:Key Research and Development Project of Shaanxi Province (2021LLRH-05-08, 2021LLRH-05-09, 2023-LL-QY-33), Qinchuangyuan ‘Scientist + Engineer’ Project of Xi’an City (23KGDW0014-2023), and Natural Science Basic Research Program of Shaanxi (2022JM-239). |
|
|
1 Peng X, Liu W C, Wu G H, et al. Journal of Materials Science & Technology, 2022, 99(4), 193. 2 Lan Q, Liu B L, Chang Z Y, et al. Foundry Technology, 2021, 42(2), 141 (in Chinese). 兰乔, 刘保良, 常治宇, 等. 铸造技术, 2021, 42(2), 141. 3 Ding Z G. Theoretical study of the dislocation sliding mechanisms of magnesium and its alloys. Ph, D. Thesis, Nanjing University of Science & Technology, China, 2017(in Chinese). 丁志刚. 镁及其合金中位错滑移机制的理论研究, 博士学位论文. 南京理工大学, 2017. 4 Wu R, Yan Y, Wang G, et al. International Materials Reviews, 2015, 60(2), 65. 5 Sun Y H, Wang R C, Peng C Q, et al. Transactions of Nonferrous Metals Society of China, 2019, 29(1), 1. 6 Cai X, Qiao Y X, Xu D K, et al. Materials Reports, 2019, 33(S2), 374 (in Chinese). 蔡祥, 乔岩欣, 许道奎, 等. 材料导报, 2019, 33(S2), 374. 7 Feng K, Li D M, He C D, et al. Special Casting & Nonferrous Alloys, 2017, 37(2), 140 (in Chinese). 冯凯, 李丹明, 何成旦, 等. 特种铸造及有色合金, 2017, 37(2), 140. 8 Sheng D D, Shi Y J, Wang X X, et al. Light Alloy Fabrication Technology, 2021, 49(8), 8 (in Chinese). 圣冬冬, 施颖杰, 王茜茜, 等. 轻合金加工技术, 2021, 49(8), 8. 9 Hull D, Bacon D J. Introduction to dislocations, Elsevier, United Kingdom, 2011, pp. 78. 10 Peng X, Liu W C, Wu G H, et al. Journal of Materials Science & Technology, 2022, 99(4), 193. 11 Somekawa H, Egusa D, Abe E. Materials Science and Engineering A, 2020, 790, 139705. 12 Furui M, Kitamura H, Anada H, et al. Acta Materialia, 2007, 55(3), 1083. 13 Wang Z T. Light Alloy Fabrication Technology, 2016, 44(8), 1 (in Chinese). 王祝堂. 轻合金加工技术, 2016, 44(8), 1. 14 Li C Q, Liu X, Dong L J, et al. Materials Letters, 2021, 301, 130305. 15 Kudela J S, Švec P, Bajana O, et al. Kovove Materialy-Metallic Materials, 2016, 54, 483. 16 Wang S J, Wu G Q, Ling Z H, et al. Materials Science and Engineering A, 2009, 518(1-2), 158. 17 Gu X F, Furuhara T, Kiguchi T, et al. Scripta Materialia, 2020, 185, 25. 18 Li X, Mao P L, Wang F, et al. Materials Reports, 2019, 33(7), 1182 (in Chinese). 李响, 毛萍莉, 王峰, 等. 材料导报, 2019, 33(7), 1182. 19 Lu F M. Microstructure controls and performance improvements of Mg-RE-X alloys containing long-period stacking ordered (LPSO) precipitates. Ph. D. Thesis, Hohai University, China, 2017 (in Chinese). 卢富敏. 含长周期堆垛有序结构相Mg-RE-X合金的组织控制及高性能化研究. 博士学位论文, 河海大学, 2017. 20 Kawamura Y, Hayashi K, Inoue A, et al. Materials Transactions, 2001, 42, 1172. 21 Nie J F, Zhu Y M, Morton A J. Metallurgical and Materials Transactions A, 2014, 45(8), 3338. 22 Gao A, Li Q A, Chen X Y, et al. Journal of the Chinese Society of Rare Earths, 2024, 42(2), 204 (in Chinese). 高傲, 李全安, 陈晓亚, 等. 中国稀土学报, 2024, 42(2), 204. 23 Geshani M S, Kalayeh P M, Asadi A H, et al. Journal of Materials Research and Technology, 2023, 24, 4945. 24 Abe E, Ono A, Itoi T, et al. Philosophical Magazine Letters, 2011, 91(10), 690. 25 Hao J Q, Zhang J S, Xu C X, et al. Journal of Alloys and Compounds, 2018, 754, 283. 26 Luan S Y, Zhang L, Chen L J, et al. Materials Science and Engineering A, 2023, 873, 145022. 27 Zhang S, Yuan G Y, Lu C, et al. Journal of Alloys and Compounds, 2011, 509(8), 3515. 28 Liang J R, Cao F R. Special Casting & Nonferrous Alloys, 2021, 41(8), 932 (in Chinese). 梁晋瑞, 曹富荣. 特种铸造及有色合金, 2021, 41(8), 932. 29 Pu Z J, Chen D J, Zhang K, et al. Materials Reports, 2017, 31(7), 79 (in Chinese). 蒲治军, 陈东杰, 张奎, 等. 材料导报, 2017, 31(7), 79. 30 Luo S Q, Tang A T, Pan F S, et al. Transactions of Nonferrous Metals Society of China, 2011, 21(4), 795. 31 Wang Y, Rong W, Wu Y J, et al. Journal of Alloys and Compounds, 2017, 698, 1066. 32 Yang K, Zhang J S, Zong X M, et al. Materials Science and Engineering A, 2017, 705, 257. 33 Zhang L L, Zhang J S, Zhao R, et al. Corrosion Engineering, Science and Technology, 2021, 56(5), 427. 34 Zhou X J, Yao Y, Zhang J, et al. Materials Science and Engineering A, 2020, 794, 139934. 35 Liu W, Zhao Y H, Zhang Y T, et al. International Journal of Plasticity, 2023, 164, 103573. 36 Zhou J X, Luo X J, Yang H, et al. Journal of Materials Research and Technology, 2023, 24, 7258. 37 Kawano S, Iikubo S, Ohtani H. Computational Materials Science, 2020, 171, 109210. 38 Jin Q Q, Shao X H, Zheng S J, et al. Journal of Materials Science & Technology, 2021, 61(2), 114. 39 Gao H Y, Ikeda K, Morikawa T, et al. Materials Letters, 2015, 146, 30. 40 Mao P L, Xin Y, Han K, et al. Materials Science and Engineering A, 2020, 777, 139019. 41 Itakura M, Yamaguchi M, Egusa D, et al. Acta Materialia, 2021, 203, 116491. 42 Zhu C Y, Zhou L, Zheng J X, et al. Materials Letters, 2019, 235, 71. 43 Zhang J H, Zhang L, Leng Z, et al. Scripta Materialia, 2013, 68(9), 675. 44 Wang D, Liu S J, Wu R Z, et al. Journal of Alloys and Compounds, 2021, 881, 160663. 45 Liu X T. Effect of Li on microstructure and properties of Mg-4Y-2Er-2Zn alloy. Master’s Thesis, Harbin Engineering University, China, 2020 (in Chinese). 刘小婷. Li对Mg-4Y-2Er-2Zn合金微观组织和性能的影响. 硕士学位论文, 哈尔滨工程大学, 2020. 46 Zhang J, Dou Y C, Liu G B, et al. Computational Materials Science, 2013, 79, 564. 47 Chen J A. Research on Mg-Y-Zn-Li alloys with long period stacking ordered structures. Master’s Thesis, Taiyuan University of Technology, China, 2015 (in Chinese). 陈景爱. 长周期堆垛有序结构增强Mg-Y-Zn-Li合金的研究. 硕士学位论文, 太原理工大学, 2015. 48 Moitra A, Kim S G, Horstemeyer M F. Acta Materialia, 2014, 75, 106. 49 Wang J H, Jin Y, Wu R Z, et al. Journal of Alloys and Compounds, 2022, 927, 167027. 50 Wang C, Ma A B, Liu H, et al. Materials Reports, 2019, 33(19), 3298 (in Chinese). 王策, 马爱斌, 刘欢, 等. 材料导报, 2019, 33(19), 3298. 51 Liu W, Zhang J S, Wei L Y, et al. Materials Science and Engineering A, 2017, 681, 97. 52 Liu W, Su Y, Zhang Y T, et al. Journal of Magnesium and Alloys, 2023, 11(4), 1408. 53 Saito K, Kuzuya S, Nishijima M, et al. Materials Transactions, 2018, 59(8), 1259. 54 Brodie J, Ghazisaeidi M. Scripta Materialia, 2023, 224, 115075. 55 Yu S. The Research of microstructure and mechanical properties of Mg-Li-Zn-Y alloy. Master’s Thesis, Shenyang Aerospace University, China, 2017 (in Chinese). 于爽. Mg-Li-Zn-Y合金的组织与性能研究. 硕士学位论文, 沈阳航空航天大学, 2017. 56 Dong H W, Wu Y M, Wang L M. Ordnance Material Science and Engineering, 2009, 32(1), 88 (in Chinese). 董含武, 吴耀明, 王立民. 兵器材料科学与工程, 2009, 32(1), 88. 57 Zheng D F, Zhu Q C, Zeng X Q, et al. Materials Letters, 2022, 311, 131524. 58 Nakasuji Y, Somekawa H, Yuasa M, et al. Materials Letters, 2021, 292, 129625. 59 Li W P, Liu C X, Liu L L, et al. Intermetallics, 2021, 135, 107225. 60 Liu W, Zeng Z R, Hou H, et al. Materials Science and Engineering A, 2020, 798(4), 140121. 61 Liu W, Zhang J S, Xu C X, et al. Materials & Design, 2016, 110, 1. 62 Zhong F, Wang Y, Wu R Z, et al. Journal of Alloys and Compounds, 2020, 831, 154765. 63 Li C Q, Xu D K, Zhang Z R, et al. Journal of Materials Science & Technology, 2020, 57, 138. 64 Luan J Y, Wang B J, Xu D K, et al. Materials Reports, 2020, 34(S2), 1441 (in Chinese). 栾吉瑜, 王保杰, 许道奎, 等. 材料导报, 2020, 34(S2), 1441. 65 Mou Y, Ma Y L, Zhao X H, at al. The Chinese Journal of Nonferrous Metals, 2021, 31(5), 1203 (in Chinese). 牟宇, 麻彦龙, 赵旭晗, 等. 中国有色金属学报, 2021, 31(5), 1203. 66 Li C Q, Xu D K, Zeng Z R, et al. Materials & Design, 2017, 121, 430. 67 Li J G, Yang Y, Deng H J, et al. Journal of Alloys and Compounds, 2020, 823, 153893. 68 Zhang J X, Zhang J S, Han F Y, et al. Journal of Materials Science & Technology, 2020, 42, 130. 69 Xie J S, Zhang J H, Zhang Z, et al. Corrosion Science, 2022, 198, 110163. 70 Wang J H, Wu R Z, Feng J, et al. Transactions of Nonferrous Metals Society of China, 2022, 32(05), 85. 71 Wang J H, Jin S Y, Wu R Z, et al. Journal of Materials Science: Materials in Electronics, 2020, 31, 17249. 72 Liu L Z, Chen X H, Pan F S. Journal of Magnesium and Alloys, 2021, 9(6), 1906. 73 Wang J H, Xu L, Wu R Z, et al. Journal of Alloys and Compounds, 2021, 882, 160524. |
|
|
|