INORGANIC MATERIALS AND CERAMIC MATRIX COMPOSITES |
|
|
|
|
|
Application of Layered Double Hydroxides and Their Derivatives in Lithium-Sulfur Batteries |
GE Shiwei, ZHAO Qian*, LIU Yu, LIU Yaoyang, WEI Chu
|
State Key Laboratory of Bio-based Material and Green Papermaking, Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China |
|
|
Abstract Lithium-sulfur (Li-S) batteries are promising next-generation energy storage systems due to their high theoretical energy density and low material cost. However, the application of Li-S batteries is hindered by the poor electrical conductivity of sulfur, the shuttle effect of polysulfide during charge-discharge process, the volume expansion and the lithium dendrites, which result in low capacity, severe capacity decay and inferior Coulombic efficiency of the batteries. Layered double hydroxides (LDHs) are two-dimensional materials with adjustable intercalation structure, controllable surface chemistry and unique topological conversion properties, which have received widespread attention in energy storage systems. In Li-S batteries, the LDHs have good confinement properties for polysulfides, which can efficiently adsorb and catalyze the polysulfides, accelerate the kinetics of the redox reaction when used as sulfur host, thus enhance the electrochemical performance of Li-S batteries. Moreover, the two-dimensional LDHs can also be used as an interlayer between cathode and separator to physically inhibit the shuttle effect of Li-S batteries. Furthermore, when used in lithium anode, the LDHs can promote the uniform nucleation and deposition of lithium metal. So, in this paper, we summarize the advantage of LDHs and their derivatives in the cathode, interlayer and anode of Li-S batteries, and point out the development direction of LDHs materials in Li-S batteries.
|
Published: 25 October 2024
Online: 2024-11-05
|
|
Fund:National Natural Science Foundation of China (52102269), Natural Science Foundation of Shandong (ZR2020QE06), and Qilu University of Technology (Shandong Academy of Sciences) Science, Education and Industry Integration Pilot Project in Basic Research Category(2023PY008). |
|
|
1 Lin S, Dong J, Chen R, et al. Journal of Alloys and Compounds, 2023, 965, 171389. 2 Liu Q, Zhang Y, Zhou Y, et al. Journal of Solid State Electrochemistry, 2023, 27(3), 797. 3 Jiang Y, Yang Y, Zhang Q, et al. Materials Reports, 2024, 38(12), 12(in Chinese). 姜宇, 杨蓉, 张乾伟, 等. 材料导报, 2024, 38(12), 12. 4 Angulakshmi N, Dhanalakshmi R B, Sathya S, et al. Batteries & Supercaps, 2021, 4(7), 1064. 5 Tu J, Hao K, Li J, et al. Journal of Energy Storage, 2023, 72, 108423. 6 Xu J, Shui J, Wang J, et al. ACS Nano, 2014, 8(10), 10920. 7 Pope M A, Aksay I A. Advanced Energy Materials, 2015, 5(16), 1500124. 8 Wang J, Xie K, Wei B. Nano Energy, 2015, 15, 413. 9 Tian S, Zeng Q, Liu G, et al. Nano-micro Letters, 2022, 14(1), 196. 10 Wang H, Cui Z, He S A, et al. Nano-micro Letters, 2022, 14(1), 189. 11 Xie Y, Ao J, Zhang L, et al. Chemical Engineering Journal, 2023, 451, 139017. 12 Wang F, Jiang M, Zhao T, et al. Nano-micro Letters, 2022, 14(1), 169. 13 Dörfler S, Strubel P, Jaumann T, et al. Nano Energy, 2018, 54, 116. 14 Park S K, Lee J K, Kang Y C. Advanced Functional Materials, 2018, 28(18), 1705264. 15 Gueon D, Yoon J, Hwang J T, et al. Chemical Engineering Journal, 2020, 390, 124548. 16 Zhang Y, Li G, Wang J, et al. Advanced Functional materials, 2020, 30(22), 2001165. 17 Huang Y, Lin L, Zhang Y, et al. Nano-micro Letters, 2023, 15(1), 67. 18 Wang P, Zhang Z, Song N, et al. CCS Chemistry, 2023, 5(2), 397. 19 Wang J, Wang L, Li Z, et al. Journal of Electronic Materials, 2023, 52(6), 3526. 20 Liu T, Hu H, Ding X, et al. Energy Storage Materials, 2020, 30, 346. 21 Wu L, Liu G, Xu H, et al. RSC Advances, 2023, 13(20), 13892. 22 Hou R, Li Y, Wang Z, et al. Small, 2023, 19, 2300868. 23 Zhou Y, Shi T, Zhao C, et al. Materials Reports, 2024, 38(1), 14(in Chinese). 周宇祥, 施天宇, 赵晨媛, 等. 材料导报, 2024, 38(1), 14. 24 Hu J, Yue M, Zhang H, et al. Angewandte Chemie-International Edition, 2020, 59(17), 6715. 25 Zhou S, Yang X, Xu X, et al. Journal of the American Chemical Society, 2020, 142(1), 308. 26 De Moraes A C M, Hyun W J, Luu N S, et al. ACS Applied Materials & Interfaces, 2020, 12(7), 8107. 27 Hyun W J, De Moraes A C M, Lim J, et al. ACS Nano, 2019, 13(8), 9664. 28 Liu X, Wang Y, Yang Y, et al. Nano Energy, 2020, 70, 104550. 29 Lin H, Zhang S, Zhang T, et al. Advanced Energy Materials, 2019, 9(38), 1902096. 30 Zhang Y, Mu Z, Yang C, et al. Advanced Functional Materials, 2018, 28(38), 1707578. 31 Lin H, Yang L, Jiang X, et al. Energy & Environmental Science, 2017, 10(6), 1476. 32 Liang Q, Wang S, Jia X, et al. Journal of Materials Science & Technology, 2023, 151, 89. 33 Zhang M, Lu Y, Yue Z, et al. RSC Advances, 2023, 13(14), 9322. 34 Wang W, Wang X, Shan J, et al. Journal of Alloys and Compounds, 2023, 936, 168250. 35 Xu ZL, Lin S, Onofrio N, et al. Nature Communications, 2018, 9(1), 4164. 36 Liu Y, Liu Q, Zhang A, et al. ACS Nano, 2018, 12(8), 8323. 37 Ai W, Zhou W, Du Z, et al. Energy Storage Materials, 2017, 6, 112. 38 Sun J, Sun Y, Pasta M, et al. Advanced Materials, 2016, 28(44), 9797. 39 Choi G, Eom S, Vinu A, et al. Chemical Record, 2018, 18(7-8), 1033. 40 Yan Q, Hou X, Liu G, et al. Journal of Hazardous Materials, 2020, 400, 123260. 41 Wang Y, Zhang Y, Liu Z, et al. Angewanted Chemie-International Edition, 2017, 56(21), 5867. 42 Chen B, Zhang Z, Kim S, et al. ACS Applied Materials & Interfaces, 2018, 10(51), 44518. 43 Yu W, Sun L, Huo L, et al. ACS Applied Energy Materials, 2023, 6(10), 5548. 44 Zhang H, Li X, Yu D, et al. Plant Methods, DOI: 10.1186/s13007-023-01021-1. 45 Guo X, Chen Y, Qin J, et al. Polymer Composites, DOI: 10.1002/pc.27373 46 Xiao M, Wu C, Zhu J, et al. Nano Research, DOI: 10.1007/s12274-023-5608-z. 47 Chen S, Wu Z, Luo J, et al. Electrochimimca Acta, 2019, 312, 109. 48 Huang S, Wang Y, Hu J, et al. NPG Asia Materials, 2019, 11(1), 1. 49 Li J, Chen C, Chen Y, et al. Advanced Energy Materials, 2019, 9(42), 1901935. 50 Yang Y, Wu M, Zhu X, et al. Chinese Chemical Letters, 2019, 30(12), 2065. 51 Xie W, Song Y, Li S, et al. Energy & Environmental Materials, 2019, 2(3), 158. 52 Wang X, Cheng H, Gao X, et al. Chinese Chemical Letters, 2019, 30(4), 919. 53 Zhou L, Shao M, Wei M, et al. Journal of Energy Chemistry, 2017, 26(6), 1094. 54 Yang L, Yang T, Wang E, et al. Journal of Materials Science & Technology, 2023, 159, 33. 55 Ali S, Marwat M A, Khan M F, et al. Journal of Alloys and Compounds, 2023, 956, 170229. 56 Barghamadi M, Best A S, Bhatt A I, et al. Journal of Power Sources, 2015, 295, 212. 57 Guo P, Sun K, Shang X, et al. Small, 2019, 15(40), 1902363. 58 Wei H, Liu J, Liu Y, et al. Composites Communications, 2021, 28, 100973. 59 Zhang J, Li Z, Chen Y, et al. Angewandte Chemie-International Edition, 2018, 57(34), 10944. 60 Zhang J, Hu H, Li Z, et al. Angewanted Chemie-International Edition, 2016, 55(12), 3982. 61 Li J, Qiu W, Liu X, et al. ChemElectroChem, 2022, 9(6), 202101211. 62 Liu S, Zhang X, Wu S, et al. ACS Nano, 2020, 14(7), 8220. 63 Xiao R, Qiu W, Yang M, et al. ACS Applied Energy Materials, 2021, 4(11), 12623. 64 Dong H, Qi S, Wang L, et al. Small, 2023, 19, 2300843. 65 Qiu W, Li G, Luo D, et al. Advanced Science, 2021, 8(7), 2003400. 66 Li S, Zhang Y, Liu N, et al. Joule, 2020, 4(3), 673. 67 Li C, Zhao Y, Zhang Y, et al. Chemical Engineering Journal, 2021, 417, 129248. 68 Liu F, Wang E, Wu C, et al. Journal of Solid State Electrochemistry, 2021, 25(7), 2033. 69 Li R, Liu Y, Li H, et al. Small Methods, 2019, 3(1), 1800344. 70 Cui J, Li Z, Wang G, et al. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2020, 8(45), 23738. 71 Cui J, Li Z, Li J, et al. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2020, 8(4), 1193. 72 Liu Q, Han X, Park H, et al. ACS Applied Materials & Interfaces, 2021, 13(15), 17978. 73 Guo J, Xu Y, Wang C. Nano-micro Letters, 2011, 11(10), 4288. 74 Sun L, Li M, Jiang Y, et al. Nano-micro Letters, 2014, 14(7), 4044. 75 Gueon D, Hwang J T, Yang S B, et al. ACS Nano, 2018, 12(1), 226. 76 Zhou L, Li H, Zhang Y, et al. Materials Today Communications, 2021, 26, 102133. 77 Liu Q, Han X, Dou Q, et al. International Journal of Energy Research, 2022, 46(7), 9634. 78 Lan F, Zhang H, Fan J, et al. ACS Applied Materials & Interfaces, 2021, 13(2), 2734. 79 Liang Z, Lin D, Zhao J, et al. Proceedings of the National Academy of Science of the USA, 2016, 113(11), 2862. 80 Cloud J E, Wang Y, Li X, et al. Inorganic Chemistry, 2014, 53(20), 11289. 81 Li Z, Liu K, Fan K, et al. Angewanted Chemie-International Edition, 2019, 58(12), 3962. 82 Xiong Q, Li X, Zhou M, et al. Ionics, 2023, 29(5), 1741. 83 Luo K, Li Y, Yao J, et al. Applied Surface Science, 2023, 620, 156850. 84 Zhang K, Chen F, Pan H, et al. Inorganic Chemistry Frontiers, 2019, 6(2), 477. 85 Zhao J, Zhao D, Li L, et al. The Journal of Physical Chemistry C, 2020, 124(23), 12259. 86 Zhu X, Wang L, Bai Z, et al. Nano-micro Letters, 2023, 15(1), 75. 87 Liao X, Li Z, He Q, et al. ACS Applied Materials & Interfaces, 2020, 12(8), 9181. 88 Liu B, Huang S, Kong D, et al. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2019, 7(13), 7604. 89 Lv J, Ren H, Cheng Z, et al. Molecules, DOI: 10.3390/molecules28041823. 90 Zhang Y, Ma C, Zhang C, et al. Chemical Engineering Journal, 2023, 452, 139410. 91 Mosavati N, Salley S O, Ng K Y S, et al. Journal of Power Sources, 2017, 340, 210. 92 Chen Z, Lv W, Kang F, et al. The Journal of Physical Chemistry C, 2019, 123(41), 25025. 93 Zhu Y, He X, Mo Y. Advanced Science, 2017, 4(8), 1600517. 94 Li Z, Ma Z, Wang Y, et al. Science Bulletin, 2018, 63(3), 169. 95 Chen Y, Zhang W, Zhou D, et al. ACS Nano, 2019, 13(4), 4731. 96 Na T, Liu Y, Li X, et al. Applied Surface Science, 2020, 528, 146970. 97 Shen J, Xu X, Liu J, et al. ACS Nano, 2019, 13(8), 8986. 98 Yoo T, Maeng J Y, Park S, et al. Journal of Alloys and Compounds, 2023, 949, 169873. 99 Yang Q, Wei X, Cao X, et al. Chemical Engineering Journal, 2023, 452, 139638. 100 Duan J, Zou Y, Li Z, et al. Journal of Electroanalytical Chemistry, 2019, 847, 113187. 101 Li Z, Shao M, Zhou L, et al. Advanced Materials, 2016, 28(12), 2337. 102 Li Z, Shao M, Zhou L, et al. Nano Energy, 2016, 25, 100. 103 Shao H, Huang B, Liu N, et al. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2016, 4(42), 16627. 104 Wang L, Zhu X, Guan Y, et al. Energy Storage Materials, 2018, 11, 191. 105 Wang R, Mi J, Dong X, et al. Chemistry of Materials, 2019, 31(11), 4258. 106 Abdul Razzaq A, Yao Y, Shah R, et al. Energy Storage Materials, 2019, 16, 194. 107 Lee J S, Jun J, Jang J, et al. Small, 2017, 13(12), 1602984. 108 Fang R, Chen K, Yin L, et al. Advanced Materials, 2019, 31(9), 1800863. 109 Han Y, Wang M, Dong Y, et al. Journal of Colloid and Interface Science, 2023, 644, 42. 110 Wang X, Lan D, Zhang D, et al. Energy Storage Science and Technology, 2022, 11(11), 3447(in Chinese). 王小飞, 蓝大为, 张道明, 等. 储能科学与技术, 2022, 11(11), 3447. 111 Zhong Y, Wang S, Sha Y, et al. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2016, 4(24), 9526. 112 Liao K, Chen S, Wei H, et al. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2018, 6(45), 23062. 113 Lu J, Zhang S, Miao Z, et al. ACS Applied Energy Materials, 2023, 6(9), 4724. 114 Chen Q, Zhou J, Zhu Y, et al. Energy & Fuels, 2023, 37(6), 4711. 115 Chen S, Han X, Luo J, et al. Chemical Engineering Journal, 2020, 385, 123457. 116 Zhao M, Liu X, Zhang Q, et al. ACS Nano, 2012, 6(12), 10759. |
|
|
|