METALS AND METAL MATRIX COMPOSITES |
|
|
|
|
|
Research Progress in Grain Boundary Design and Strengthening and Toughening of Nanocrystalline Polycrystalline Metals |
CHEN Zhuokun1, ZHANG Xiaofang2, LIU Yuxin1, GUO Ting1,*, SUN Zhiping1, ZHOU Qing3, CHEN Yongnan1
|
1 School of Materials Science and Engineering, Chang’an University, Xi’an 710064, China 2 Songshan Lake Materials Laboratory, Dongguan 523808, Guangdong, China 3 State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi’an 710072, China |
|
|
Abstract Nanocrystalline polycrystalline metals exhibit many unique mechanical properties due to the high fraction volume of grain boundaries, such as high strength and hardness, good wear resistance, and excellent fatigue resistance. However, the problems of intergranular softening and grain boundary brittleness brought by the abundant grain boundaries seriously restrict their practical application in the field of structural engineering. Therefore, how to precisely design the rich and common grain boundaries in nanocrystalline polycrystalline metals, as well as establish new theories and methods related to the variation of mechanical properties, has become a hot and difficult research topic in the field of materials science and nanomechanics. In this paper, taking face-centered cubic structure metals as an example, the recent research progress in improving mechanical properties of nanocrystalline materials through grain boundary engineering was comprehensively reviewed. Moreover, several major methods in manipulating grain boundaries in present and their effects on strength and plasticity are emphasized, then underlying strength and toughness mechanisms were comparatively analyzed. Finally, the existing problems and challenges in the research process of this subject were summarized, and the future development direction was prospected.
|
Published: 25 October 2024
Online: 2024-11-05
|
|
Fund:National Natural Science Foundation of China(52175188), the Natural Science Foundation Project of Shaanxi Pro-vince (2023-JC-QN-0396), the Key Research and Development Program of Shaanxi Province (2023-YBGY-435), and the Fundamental Research Funds for the Central Universities, CHD (300102313112). |
|
|
1 Gleiter H. Progress in Materials Science, 1989, 33(4), 223. 2 Meyers M A, Mishra A, Benson D J. Progress in Materials Science, 2006, 51(4), 427. 3 Rupert T J. Scripta Materialia, 2014, 81, 44. 4 Hall E O. Proceedings of the Physical Society of London, 1951, 64, 747. 5 Petch N J. Journal of the Iron and Steel Institute, 1953, 174, 25. 6 Ovid’ko I A,Valiev R Z, Zhu Y T. Progress in Materials Science, 2018, 94, 462. 7 Turlo V, Rupert T J. Acta Materialia, 2018, 151, 100. 8 Cheng S, Spencer J A, Milligan W W. Acta Materialia, 2003, 51(15), 4505. 9 Peng H R, Jian Z Y, Liu C X, et al. Journal of Materials Science & Technology, 2022, 109, 186. 10 Gupta A, Zhou X, Thompson G B, et al. Acta Materialia, 2020, 190, 113. 11 Naik S N, Walley S M. Journal of Materials Science, 2019, 55(7), 2661. 12 Van Swygenhoven H, Derlet P M, Froseth A G. Acta Materialia, 2006, 54(7), 1975. 13 Rupert T J, Trelewicz J R, Schuh C A. Journal of Materials Research, 2012, 27(9), 1285. 14 Cengeri P, Kerber M B, Schafler E, et al. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2019, 742, 124. 15 Wang Y T, Pan D, Hou H X, et al. Materials Reports, 2022, 36(S1), 381(in Chinese). 王艺橦, 潘栋, 侯华兴, 等. 材料导报, 2022, 36(S1), 381. 16 Zhou X, Li X Y, Lu K. Science, 2018, 360(6388), 526. 17 Zhou X, Li X Y, Lu K. Physical Review Letters, 2019, 122(12), 126101. 18 Li X Y, Jin Z H, Zhou X, et al. Science, 2020, 370(6518), 831. 19 Li X Y, Zhou X, Lu K. Science Advances, 2020, 6(17), eaaz8003. 20 Li X, Lu K. In: 42nd riso international symposium on materials science-microstructural variability. Roskilde, 2022, pp.1249. 21 Yamakov V, Wolf D, Phillpot S R, et al. Nature Materials, 2004, 3(1), 43. 22 Han J H, Zhang Y, Ma Y X, et al. Materials Reports, 2022, 36(24), 117(in Chinese). 韩基鸿, 张洋, 马亚玺, 等. 材料导报, 2022, 36(24), 117. 23 Chen J L, Feng Z X, Yi J H. Materials Reports, 2022, 36(14), 182(in Chinese). 陈今良, 冯中学, 易健宏. 材料导报, 2022, 36(14), 182. 24 Sun Y A, Luo Z P, Li X Y, et al. Acta Materialia, 2022, 239, 118256. 25 He T W, Qi Y M, Ji Y Z, et al. International Journal of Mechanical Sciences, 2023, 238, 107828. 26 Hu J, Shi Y N, Sauvage X, et al. Science, 2017, 355(6331), 1292. 27 Renk O, Hohenwarter A, Schuh B, et al. In:36th riso international symposium on materials science. Riso, 2015, pp.89. 28 Guo T, Ke S, Zhou Q, et al. Journal of Alloys and Compounds, 2022, 925, 166597. 29 Raabe D, Herbig M, Sandlobes S, et al. Current Opinion in Solid State and Materials Science, 2014, 18(4), 253. 30 Kalidindi A R, Schuh C A. Acta Materialia, 2017, 132, 128. 31 Pellicer E, Varea A, Sivaraman K M, et al. ACS Applied Materials & Interfaces, 2011, 3(7), 2265. 32 Hu J, Xiao Z, Huang Y. Materials Science and Engineering: A, 2021, 800, 140261. 33 Babicheva R I, Dmitriev S V, Zhang Y, et al. Computational Materials Science, 2015, 98, 410. 34 Borovikov V, Mendelev M I, King A H. Scripta Materialia, 2018, 154, 12. 35 Zhao D D, Lovvik O M, Marthinsen K, et al. Acta Materialia, 2018, 145, 235. 36 Lohmiller J, Kobler A, Spolenak R, et al. Applied Physics Letters, 2013, 102(24), 241916. 37 Rupert T J, Trenkle J C, Schuh C A. Acta Materialia, 2011, 59(4), 1619. 38 Guo T, Huang P, Xu K W, et al. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2016, 676, 501. 39 Wu G, Chan K C, Zhu L L, et al. Nature, 2017, 545(7652), 80. 40 Xiao L L, Zheng Z Q, Guo S W, et al. Materials & Design, 2020, 194, 108895. 41 Xiao J W, Deng C. Scripta Materialia, 2021, 194, 113682. 42 Wu S S, Kou Z D, Lai Q Q, et al. Nature Communications, 2022, 13(1), 5468. 43 Zhang S, Wang F, Huang P. Journal of Materials Science & Technology, 2021, 87, 176. 44 Mantha L S, Macdonald B E, Mu X K, et al. Acta Materialia, 2021, 220, 117281. 45 Zhou X, Feng Z, Zhu L, et al. Nature, 2020, 579(7797), 67. 46 Kong J A T, Hache M J R, Tam J, et al. Scripta Materialia, 2022, 218, 114799. 47 Ozerinc S, Tai K P, Vo N Q, et al. Scripta Materialia, 2012, 67(7-8), 720. 48 Zhang P, Zhang J Y, Li J, et al. Acta Materialia, 2014, 76, 221. 49 Xu W, Zhang B, Du K, et al. Acta Materialia, 2022, 226, 117640. 50 Wang L H, Wei R J, Fang Y Y, et al. Journal of Beijing University of Technology, 2019, 45(11), 1125(in Chinese). 王立华, 韦如建, 方云义, 等. 北京工业大学学报, 2019, 45(11), 1125. 51 Hu K, Yi J, Huang B, et al. Applied Materials Today, 2022, 29, 101653. 52 Hu K, Yi J, Huang B, et al. Journal of Materials Science & Technology, 2023, 154, 9. 53 Wang Y M, Li J, Hamza A V, et al. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(27), 1115. 54 Brandl C, Germann T C, Misra A. Acta Materialia, 2013, 61(10), 3600. 55 Pan Z L, Rupert T J. Acta Materialia, 2015, 89, 205. 56 Schuler J D, Rupert T J. Acta Materialia, 2017, 140, 196. 57 Wu G, Liu C, Sun L G, et al. Nature Communications, 2019, 10, 5099. 58 Khalajhedayati A, Pan Z L, Rupert T J. Nature Communications, 2016, 7, 10802. 59 Schuler J D, Donaldson O K, Rupert T J. Scripta Materialia, 2018, 154, 49. 60 Rupert T J, Schuh C A. Philosophical Magazine Letters, 2012, 92(1), 20. 61 Wen J C, Dai P Q. The Chinese Journal of Nonferrous Metal, 2015, 25(4), 938(in Chinese). 温建程, 戴品强. 中国有色金属学报, 2015, 25(4), 938. 62 Ding Q Q, Zhang Y, Chen X, et al. Nature, 2019, 574(7777), 223. 63 Li H, Zong H X, Li S Z, et al. Nature, 2022, 604(7905), 273. 64 Singh D, Turlo V, Gianola D S, et al. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2023, 870, 144875. 65 Utt D, Lee S, Xing Y L, et al. Nature Communications, 2022, 13(1), 4777. 66 Li Z, Zhang Y, Zhang Z B, et al. Nature Communications, 2022, 13(1), 5581. 67 Li Z, Wang H T, Guo Q, et al. Nano Letters, 2018, 18(10), 6255. 68 Wei B Q, Wu W Q, Nastasi M, et al. International Journal of Plasticity, 2022, 158, 103431. 69 Lu K, Lu L, Suresh S. Science, 2009, 324(5925), 349. 70 Zhao H Z, You Z S, Tao N R, et al. Acta Materialia, 2021, 210, 116830. 71 Zhang D D, Wang H, Zhang J Y, et al. Journal of Materials Science & Technology, 2021, 87, 184. 72 Liu M P, Ren X Y, Chen Y L, et al. The Chinese Journal of Nonferrous Metal, 2023, 33(6), 1695(in Chinese). 刘满平, 任晓宇, 陈昱林, 等. 中国有色金属学报, 2023, 33(6), 1695. 73 Zhang D D, Zhang J Y, Kuang J, et al. Acta Materialia, 2021, 220, 117288. 74 Yang T, Zhao Y L, Li W P, et al. Science, 2020, 369(6502), 427. |
[1] |
WANG Zijian, SUN Shulei, XIAO Han, RAN Xudong, CHEN Qiang, HUANG Shuhai, ZHAO Yaobang, ZHOU Li, HUANG Yongxian. Research Status of Additive Friction Stir Deposition[J]. Materials Reports, 2024, 38(9): 22100039-16. |
|
|
|
|