POLYMERS AND POLYMER MATRIX COMPOSITES |
|
|
|
|
|
Numerical Simulation of Mesoscopic Fracture of Sand Layer in GRPM Pipe Culvert |
WANG Qingzhou, SUN Yinghui, XUE Xiao, MA Shibin, XIAO Chengzhi*
|
School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin 300401, China |
|
|
Abstract In order to improve the mechanical properties of the sand layer in the GRPM pipe and enhance its designability, a representative volume element model was constructed to reproduce its mesoscopic structure characteristics by means of finite element simulation software, and the zero-thickness cohesive element was inserted into the model to realize the complex and discrete multi-crack initiation and expansion of the model. The uniaxial tensile fracture process of the sand layer specimen was simulated, the microscopic fracture damage evolution processwas analyzed, and the influence of each component parameter on the fracture mechanical behavior of the sand layer was explored. The research results show that cohesive fracture model can better characterize the complex fracture process of sand layer. During axial tensile deformation, the main crack of the material is approximately perpendicular to the loading direction, accompanied by interfacial debonding and cracks propagation in the matrix. The crack propagation direction is mainly affected by the position of the particle distribution, increasing its volume fraction can improve the stiffness of the material. The enhancement effect of multi-particle size distribution is better than that of single particle size distribution, the smaller the particle size, the better the reinforcement and toughening effect. The increase of the tensile strength and fracture energy of the cohesive unit can improve the overall tensile strength of the model. The larger the crack path, the simpler the crack path.
|
Published: 10 September 2024
Online: 2024-09-30
|
|
Fund:Tianjin Natural Science Foundation Project (20JCYBJC00630). |
|
|
1 Pan Diankun, Li Mengjue, Yan Zheng. Engineering Plastics Application, 2011, 39(10), 73 (in Chinese). 潘典坤, 李萌崛, 严正. 工程塑料应用, 2011, 39(10), 73. 2 Wang Qingzhou, Liang Xiao, Wei Lianyu, et al. Journal of Chang'an University(Natural Science Edition), 2018, 38(3), 10 (in Chinese). 王清洲, 梁筱, 魏连雨, 等. 长安大学学报(自然科学版), 2018, 38(3), 10. 3 Yang Jianming, Shi Qiang, Pan Duojun, et al. Fiberglass/Composite Materials, 2014(8), 72 (in Chinese). 杨建明, 时强, 潘多军, 等. 玻璃钢/复合材料, 2014(8), 72. 4 Zhang Jiyuan, Wei Lianyu, Zhang Guopan, et al. Fiberglass/Composite Materials, 2016(10), 56 (in Chinese). 张济源, 魏连雨, 张国盘, 等. 玻璃钢/复合材料, 2016(10), 56. 5 Wang Qingzhou, Xue Xiao, Sun Yanwen, et al. Engineering Plastics Application, 2020, 48(10), 116 (in Chinese). 王清洲, 薛晓, 孙言文, 等. 工程塑料应用, 2020, 48(10), 116. 6 Wang Qingzhou, Zhang Chaoyang, Xue Xiao, et al. Engineering Plastics Application, 2020, 48(12), 107 (in Chinese). 王清洲, 张朝阳, 薛晓, 等. 工程塑料应用, 2020, 48(12), 107. 7 Rafiee R. Composites Part B:Engineering, 2013, 45(1), 257. 8 Rafiee R. Polymer Testing, 2018, 67, 322. 9 Li Chaohong, Wang Hailong, Xu Guangxing. Journal of Central South University(Science and Technology), 2011, 42(2), 463 (in Chinese). 李朝红, 王海龙, 徐光兴. 中南大学学报(自然科学版), 2011, 42(2), 463. 10 Swati R F, Wen L, Elahi H, et al. Microsystem Technologies, 2018, 25, 747. 11 Wang Zhen, Wang Ying. Journal of Central South University (Science and Technology), 2020, 51(7), 1873 (in Chinese). 汪珍, 王莹. 中南大学学报(自然科学版), 2020, 51(7), 1873. 12 Lu Zixing. Acta Mechanica Solida Sinica, 2015 (S1), 85 (in Chinese). 卢子兴. 固体力学学报, 2015 (S1), 85. 13 Rozylo P. Composite Structures, 2021, 257, 113303. 14 Wang X E, Yang J, Liu Q F, et al. Engineering Structures, 2017, 152, 493. 15 Su Y, Ouyang Q, Zhang W, et al. Materials Science and Engineering:A, 2014, 597, 359. 16 Qi Xiaole. Finite element simulation and experimental research on machining of SiCp/Al particle reinforced composites. Master's Thesis, Tianjin Vocational and Technical Normal University, China, 2020 (in Chinese). 齐小乐. SiCp/Al颗粒增强复合材料切削加工有限元模拟及实验研究. 硕士学位论文, 天津职业技术师范大学, 2020. 17 Hao Pei. Study on nonideal interface stiffness of particle reinforced composites. Master's Thesis, Tianjin University, China, 2014 (in Chinese). 郝培. 颗粒增强复合材料非理想界面刚度的研究. 硕士学位论文, 天津大学, 2014. 18 Bai Xiaoming. Research on the macro-mechanical model of composite materials based on data mining. Ph. D. Thesis, Harbin Institute of Technology, China, 2016 (in Chinese). 白晓明. 基于数据挖掘的复合材料宏—细观力学模型研究. 博士学位论文, 哈尔滨工业大学, 2016. 19 Qing H. Materials & Design, 2013, 44, 446. 20 Schneider M. Computational Mechanics, 2017, 59(2), 247. 21 Rafiee R, Habibagahi M R. Thin-Walled Structures, 2018, 131, 347. 22 Meng Q, Wang Z. Engineering Fracture Mechanics, 2015, 142, 170. 23 Chen Yanwei, Feng Jili, Zhu Tianyu, et al. Acta Materiae Composite Sinica, 2022, 39(10), 4972 (in Chinese). 陈燕伟, 冯吉利, 朱天宇, 等. 复合材料学报, 2022, 39(10), 4972. 24 Xin Zhenyang, Miao Wencheng, Wang Yue, et al. Journal of Composite Materials, 2019, 36(6), 1471 (in Chinese). 信振洋, 苗文成, 王悦, 等. 复合材料学报, 2019, 36(6), 1471. |
|
|
|