POLYMERS AND POLYMER MATRIX COMPOSITES |
|
|
|
|
|
A Novel Crown-ether-functionalized Magnetic Solid-phase Nanomaterial for Extracting Rubidium |
FU Hua, CHEN Huiyuan, SONG Weijun, ZHAO Yun*
|
College of Chemical Engineering, Qinghai University, Xining 810016, China |
|
|
Abstract In this study, a novel crown-ether-functionalized nano magnetic solid-phase extractant (CFE) for extracting Rb+ was successfully prepared by the following three steps. First, the magnetic core of Fe3O4 nanoparticles was synthesized by a solvothermal method. Second, the SiO2-NH2 group was coated on the surface of the magnetic core to prepare an intermediate product of Fe3O4@SiO2-NH2 by ester hydrolytic reaction of (3-aminopropyl)triethoxysilane in an alkaline environment. Third, the targeted functional group of crown ether was then modified on the surface of the intermediate product to prepare a novel CFE extractant by an amidation reaction between the carboxyl group in 4′-carboxybenzo-18-crown 6-ether and the amino group on Fe3O4@SiO2-NH2 under the catalysis of N-(3-Dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride. Then, the characteristics of micro morphology, magnetization, X-ray diffraction, infrared absorption, and elemental composition of the Fe3O4, Fe3O4@SiO2-NH2 and CFE were analyzed, which had lent support to the successful preparation of these materials. The extraction ability for Rb+ of this novel CFE material was verified. Moreover, the effect of solution pH on Rb+ extraction rate was explored, and the results showed that CFE had a best extraction rate of 90.0% for Rb+ at the pH 13 (at room temperature, extracting for 30 minutes).
|
Published: 10 September 2024
Online: 2024-09-30
|
|
Fund:Applied Basic Research Foundation of QingHai Province Science and Technology Department (2020-ZJ-702). |
|
|
1 Gao L, Ma G H, Zheng Y X, et al. Solvent Extraction and Ion Exchange, 2020, 38 (7), 753. 2 Zhang X F, Qin Z F, Aldahri T, et al. Journal of the Taiwan Institute of Chemical Engineers, 2020, 116, 43. 3 Chen W S, Lee C H, Chung Y F, et al. Metals, 2020, 10(5), 607. 4 Feng Z H, An L Y, Huang Z G, et al. Revue Roumaine De Chimie, 2020, 65(2), 141. 5 Bao A M, Qian Z Q. Journal of the Chemical Society of Pakistan, 2019, 41(6), 1004. 6 Yu C, Lu J, Hou Z Q, et al. Separation and Purification Technology, 2021, 255, 1. 7 Chen S Q, Qin X X, Gu W X, et al. Talanta, 2016, 161, 325. 8 Wen Q, Wang Y Z, Xu K J, et al. Analytica Chimica Acta, 2016, 939, 54. 9 Zhou Z Y, Hu Y L, Wang Z, et al. New Journal of Chemistry, 2021, 45(21), 9582. 10 Zheng X D, Wang Y Y, Qiu F X, et al. Journal of Chemical and Engineering Data, 2019, 64(3), 926. 11 Li H B, Qiao Y F, Li J, et al. Biosensors & Bioelectronics, 2016, 77, 378. 12 Wang C Q, Qian J, Wang K, et al. Biosensors & Bioelectronics, 2016, 77, 1183. 13 Wang Z, Zhang A Y, Su J T, et al. Journal of Radioanalytical and Nuclear Chemistry, 2021, 329(1), 359. 14 Lyu Y Z, Zhang A Y, Wang Y N, et al. Journal of Chemical and Engineering Data, 2020, 65(1), 198. 15 Nur T, Loganathan P, Johir M A H, et al. Separation and Purification Technology, 2018, 191, 286. 16 Din I U, Tasleem S, Naeem A, et al. Synthesis and Reactivity in Inorganic Metal-Organic and Nano-Metal Chemistry, 2016, 46(3), 405. 17 Lv Y W, Xing P, Ma B Z, et al. ACS Sustainable Chemistry & Engineering, 2020, 8(38), 14462. 18 Luo Y, Chen Q D, Shen X H. Separation and Purification Technology, 2019, 227, 1. 19 Huang D F, Zheng H, Liu Z Y, et al. Polish Journal of Chemical Technology, 2018, 20(2), 40. 20 Tang H H, Zhao L H, Sun W, et al. Hydrometallurgy, 2018, 175, 144. 21 Li Z, Pranolo Y, Zhu Z W, et al. Hydrometallurgy, 2017, 171, 1. 22 Liu S M, Liu H H, Huang Y J, et al. Transactions of Nonferrous Metals Society of China, 2015, 25(1), 329. 23 Mohite B S, Khopkar S M. Talanta, 1985, 32(7), 565. 24 Safarikova M, Safarik I. Journal of Magnetism and Magnetic Materials, 1999, 194(1-3), 108. 25 Bao J M, Sun C H, Li Y X, et al. Materials Reports, 2015, 29(20), 1 (in Chinese). 包建民, 孙超慧, 李优鑫, 等. 材料导报, 2015, 29(20), 1. 26 Li D J, Chen Y, Liu Z. Chemical Society Reviews, 2015, 44(22), 8097. 27 Sun A J, Fang F. Materials Reports, 2014, 28(4), 72 (in Chinese). 孙爱娟, 方芬. 材料导报, 2014, 28(4), 72. 28 Xing P, Wang C Y, Chen Y Q, et al. Hydrometallurgy, 2021, 203, 1. 29 Wang X L, Fu Y B, Liu Y N, et al. Journal of Nuclear and Radiochemistry, 1996, 18(1), 21 (in Chinese). 汪小琳, 傅依备, 刘亦农, 等. 核化学与放射化学, 1996, 18(1), 21. 30 Wang W J, Chen B Z, Dai X N, et al. Journal of Nuclear and Radiochemistry, 1980, 2(3), 153 (in Chinese). 王文基, 陈伯忠, 戴鲜宁, 等. 核化学与放射化学, 1980, 2(3), 153. 31 Du Y, Chen X M, Chen W J, et al. Journal of Wuhan University of Technology, 2004, 26(7), 52 (in Chinese). 杜瑛, 陈兴明, 陈文浚, 等. 武汉理工大学学报, 2004, 26(7), 52. 32 Laffafchi F, Tajbakhsh M, Sarrafi Y, et al. Journal of Separation Science, 2022, 45(15), 3005. 33 Mousa E, Haroun M M, Nasr G M. Journal of Materials Science-Materials in Electronics, 2021, 32(8), 10101. 34 Ferrer C, Isasi J, Arevalo P, et al. Journal of Alloys and Compounds, 2022, 899, 1. 35 Yari M, Shiri L, Rostami H. Chemistryselect, 2022, 7(19), 1. 36 Ge Y Q, Li C P, Waterhouse G I N, et al. Ceramics International, 2021, 47(2), 1728. 37 Yong T T, Zhao C X, Peng C J, et al. Journal of East China University of Science and Technology, 2019, 45(1), 58 (in Chinese). 雍婷婷, 赵成蹊, 彭昌军, 等. 华东理工大学学报(自然科学版), 2019, 45(1), 58. 38 Visser A E, Swatloski R P, Reichert W M, et al. Industrial & Engineering Chemistry Research, 2000, 39(10), 3596. 39 Li C P, Xin B P, Xu W G, et al. The Chinese Journal of Process Engineering, 2007, 7(4), 674 (in Chinese). 李长平, 辛宝平, 徐文国, 等. 过程工程学报, 2007, 7(4), 674. |
|
|
|