INORGANIC MATERIALS AND CERAMIC MATRIX COMPOSITES |
|
|
|
|
|
Progress in Lithium Storage Mechanism and Optimizing Lithium Storage Performance of Hard Carbon Anodes for Lithium-ion Batteries |
SHU Qiqi, LIAN Fei, LIANG Chenli, ZHANG Qingtang*
|
School of Petrochemical Technology, Lanzhou University of Technology, Lanzhou 730050, China |
|
|
Abstract The hard carbon anode has significant research value and promising application prospects due to its excellent specific capacity, high-rate fast charging capability, absence of lithium branches crystal, and lack of volume expansion behavior. It plays a crucial role in the electrochemical performance of lithium-ion batteries (LIBs). In recent years, numerous scholars have conducted extensive research on hard carbon anodes, particularly focusing on the lithium storage mechanism and the optimizing strategies of lithium storage performance. This article provides an overview of the formation process and lithium storage mechanism of hard carbon. It offers a theoretical foundation and scientific basis for designing high-performance hard carbon anodes. This paper subsequently summarizes the latest advancements in preparation techniques, structural regulation, morphology design, and heteroatom doping for modifying hard carbon anodes. These advancements are based on two categories of precursors:biomass and polymers. Furthermore, conjugated microporous polymers hard carbon is proposed as a future direction for optimizing lithium storage performance. Finally, the challenges and future research directions for hard carbon as anodes are discussed.
|
Published: 10 July 2024
Online: 2024-08-01
|
|
Fund:National Natural Science Foundation of China(21968016, 21466020). |
|
|
1 Wang G, Yu M H, Feng X L. Chemical Society Reviews, 2021, 50, 2388. 2 Wang C Y, Yang X G, Ge S H, et al. Nature, 2022, 611, 485. 3 Poizot P, Laruelle S, Grugeon S, et al. Nature, 2000, 407, 496. 4 Lu L L, Lu Y Y, Zhu Z X, et al. Science Advances, 2022, 8(17), 6624. 5 Masias A, Marcicki J, Paxton W A. ACS Energy Letters, 2021, 6(2), 621. 6 Liu K, Liu Y Y, Lin D C, et al. Science Advances, 2018, 4(6), 9820. 7 Ge S H, Leng Y J, Liu T, et al. Science Advances, 2020, 6(9), 7633. 8 Liu Y Y, Zhu Y Y, Cui Y. Nature Energy, 2019, 4, 540. 9 Xia H R, Zhang W, Cao S K, et al. ACS Nano, 2022, 16(6), 8525. 10 Chen X L, Ma Y Y. Technologies, 2018, 3(10), 1800041. 11 Fang R P, Chen K, Yin L C, et al. Advanced Materials, 2019, 31(9), 1800863. 12 Li L, Zhang D, Deng J P, et al. Carbon, 2021, 183(15), 721. 13 Li S Q, Wang K, Zhang G F, et al. Advanced Functional Materials, 2022, 32(23), 2200796. 14 Chen Z C, Liu Y, Zhang Y Z, et al. Materials Letters, 2018, 229(15), 134. 15 Zhang X T, Yuan Y F, Zhu M, et al. Nanotechnology, 2020, 31(28), 285402. 16 Cheng D J, Zhou X Q, Hu H Y, et al. Carbon, 2021, 182, 758. 17 Long W Y, Fang B Z, Lgnaszak A, et al. Chemical Society Reviews, 2017, 46, 7176. 18 Zhu Z Y, Xu Z. Renewable and Sustainable Energy Reviews, 2020, 134, 110308. 19 Amina K, Ashrafa N, Mao L, et al. Nano Energy, 2021, 85, 105958. 20 Yuan M M, Liu H J, Fen R. Materials Today, 2023, 63, 360. 21 Du W R, Du X F, Ma M B, et al. Advanced Functional Materials, 2022, 32(21), 2110871. 22 Yun F L, Liu S Y, Gao M, et al. Journal of Energy Chemistry, 2023, 79, 301. 23 Jin C B, Nai J W, Sheng O W, et al. Energy & Environmental Science, 2021, 14, 1326. 24 Xie L J, Tang C, Song M X, et al. Journal of Energy Chemistry, 2022, 72, 554. 25 Xie L J, Tang C, Bi Z H, et al. Advanced Energy Materials, 2021, 11(38), 2101650. 26 Lee J S, Cooper A I. Chemical Reviews, 2020, 120(4), 2171. 27 Wang Y B, Chen J, Yan W, et al. Progress in Chemistry, 2021, 33(5), 838(in Chinese). 王玉冰, 陈杰, 延卫, 等. 化学进展, 2021, 33(5), 838. 28 Zhao L F, Hu Z, Lai W H, et al. Advanced Energy Materials, 2021, 11(1), 2002704. 29 Saurel D, Orayech B, Xiao B W, et al. Advanced Energy Materials, 2018, 8(17), 1703268. 30 Qiu T, Tang W, Han X, et al. Chemical Engineering Journal, 2023, 466, 143149. 31 Byon H R, Gallant B M, Lee S W, et al. Advanced Functional Materials, 2013, 23(8), 1037. 32 Ventosa E, Xia W, Klink S, et al. Electrochimica Acta, 2012, 65(30), 22. 33 Chong Y, Rui X, Ye X, et al. Advanced Functional Materials, 2020, 30(23), 1909887. 34 Wu Y Q, Xie L Q, Ming H, et al. ACS Energy Letters, 2020, 5(3), 807. 35 Yu C X, Li Y, Ren H H, et al. Carbon Energy, 2023, 5(1), e220. 36 Wang H, Shao Y, Mei S L, et al. Chemical Reviews, 2020, 120(17), 9363. 37 Feng X, Bai Y, Liu M Q, et al. Energy & Environmental Science, 2021, 14, 2036. 38 Kubota K, Shimadzu S, Yabuuchi N, et al. Chemistry of Materials, 2020, 32(7), 2961. 39 Yang J Y, Zhai Y X, Zhang X H, et al. Advanced Energy Materials, 2021, 11(29), 2100856. 40 Xie J, Lu Y C. Nature Communications, 2020, 11, 2499. 41 Olsson E, Cottom J, Cai Q. Small, 2021, 17(18), 2007652. 42 Xie F, Xu Z, Guo Z Y, et al. Progress in Energy, 2020, 2(4), 042002. 43 Franklin R E. The Royal Society, 1951, 209(1097), 196. 44 Ban L L, Crawford D, Mrash H. Journal of Applied Crystallography, 1975, 8, 415. 45 Townsend S J, Lenosky T J, Muller D A, et al. Physical Review Letters, 1992, 69(6), 921. 46 Terzyk A P, Furmaniak S, Harris P J F, et al. Physical Chemistry Che-mical Physics, 2007, 9(44), 5919. 47 Gao Y L, Pan Z H, Sun J G, et al. Nano-Micro Letters, 2022, 14(1), 94. 48 Eng A Y S, Soni C B, Lum Y W, et al. Science Advances, 2022, 8(19), 2422. 49 Dou X W, Hasa L, Saurel D, et al. Materials Today, 2019, 23, 87. 50 Winter M, Besenhard J O, Spahr M E, et al. Advanced Materials, 1998, 10(10), 725. 51 Buiel E R, George A E, Dahn J R. Carbon, 1999, 37(9), 1399. 52 Stevens D A, Dahn J R. Journal of The Electrochemical Society, 2001, 148(8), A803. 53 Yang G J, Li X Y, Guan Z, et al. Nano Letters, 2020, 20(5), 3836. 54 Huang S F, Li Z P, Wang B, et al. Advanced Functional Materials, 2018, 28(10), 1706294. 55 Alvin S, Cahyadi H S, Hwang J, et al. Advanced Energy Materials, 2020, 10(20), 2000283. 56 Guo S S, Chen Y X, Dong Y, et al. Applied Surface Science, 2018, 437(15), 136. 57 Dai X H, Fan H X, Zhang J J, et al. Electrochimica Acta, 2019, 319, 277. 58 Zhang X, Hu J B, Chen X Y, et al. Journal of Porous Materials, 2019, 26(6), 1821. 59 Zhang Y J, Li X, Dong P, et al. ACS Applied Materials & Interfaces, 2018, 10(49), 42796. 60 Kim J H, Jung M J, Kim M J, et al. Journal of Industrial and Engineering Chemistry, 2018, 61(25), 368. 61 Drews M, Buttner J, Bauer M, et al. ChemElectroChem, 2021, 8(24), 4750. 62 Xiang J Y, Lv W M, Mu C P, et al. Journal of Alloys and Compounds, 2017, 701(15), 870. 63 Xu K Q, Li Y S, Xiong J W, et al. Frontiers in Chemistry, 2018, 6, 366. 64 Wu Z R, Wang L P, Huang J, et al. Electrochimica Acta, 2019, 306(20), 446. 65 Xiao B W, Soto F A, Gu M, et al. Advanced Energy Materials, 2018, 8(24), 1801441. 66 Adams R A, Varma A, Pol V G. Advanced Energy Materials, 2019, 9(35), 1900550. 67 Fromm O, Heckman A, Rodehorst U C, et al. Carbon, 2018, 128, 147. 68 Song M X, Yi Z L, Xu R, et al. Energy Storage Materials, 2022, 51, 620. 69 Sun D, Luo B, Wang H Y, et al. Nano Energy, 2019, 64, 103937. 70 Dutta S, Bhaumik A, Wu K C W. Energy & Environmental Science, 2014, 7, 3574. 71 Tian W J, Zhang H Y, Duan X G, et al. Advanced Functional Materials, 2020, 30(17), 1909265. 72 Kizzire D G, Richter A M, Harper D P, et al. ACS Omega, 2021, 6(30), 19883. 73 Ko M, Chae S, Ma J, et al. Nature Energy, 2020, 5(4), 344. 74 Paraknowitsch J P, Thomas A. Energy & Environmental Science, 2013, 6, 2839. 75 Schon T B, Tilley A J, Bridges C R, et al. Advanced Functional Materials, 2016, 26(38), 6896. 76 Ou J, Yang L, Zhang Z. Powder Technology, 2019, 344(15), 89. 77 Elizabath I, Singh B P, Trikha S, et al. Journal of Power Sources, 2016, 329(15), 412. 78 Ou J, Yang L, Zhang Z, et al. Journal of Power Sources, 2016, 333(30), 193. 79 Li R Z, Huang J F, Li J Y, et al. International Journal of Energy Research, 2020, 44(5), 4026. 80 Wan H R, He T T, Chen T, et al. Journal of Alloys and Compounds, 2020, 863(15), 158078. 81 Wan B S, Zhang H Y, Tang S, et al. Sustainable Energy & Fuels, 2022, 6, 4338. 82 Wan H R, Hu X F J. Journal of Colloid and Interface Science, 2020, 558(15), 242. 83 Tan M C, Zhang W H, Fan C L, et al. Energy Technology, 2019, 7(3), 1801164. 84 Yang M M, Kong Q Q, Feng W, et al. Carbon, 2021, 176, 71. 85 Liu Y, Dai H D, Wu L, et al. Advanced Energy Materials, 2019, 9(34), 1901379. 86 Muruganantham R, Wang F M, Liu W R. Electrochimica Acta, 2022, 424(20), 140573. 87 Wan H R, Hu X F. International Journal of Hydrogen Energy, 2019, 44(39), 22250. 88 Chen M, Wang W, Liang X, et al. Advanced Energy Materials, 2018, 8(19), 1800171. 89 Ding J, Zhang Y, Huang Y D, et al. Journal of Alloys and Compounds, 2021, 851(15), 156791. 90 Xiong J W, Pan Q C, Zheng F H, et al. Frontiers in Chemistry, 2018, 6, 78. 91 Li Z Q, Cai L, Chu K N, et al. Dalton Transactions, 2021, 50, 4335. 92 Yuan Y, Chen Z W, Yu H X, et al. Energy Storage Materials, 2020, 32, 65. 93 Li J H, Cai Y F, Wu H M, et al. Advanced Energy Materials, 2021, 11(15), 2003239. 94 Rao X F, Lou Y T, Chen J, et al. Frontiers in Energy Research, 2020, 8, 3. 95 Zhao L F, Lai W H, Tao Y, et al. Advanced Energy Materials, 2020, 11(1), 2002704. 96 Jafari S M, Khosravi M, Mollazadeh M. Electrochimica Acta, 2016, 203(10), 9. 97 Xu S T, Zhang Z F, Wu T Y, et al. Lonics, 2018, 24, 99. 98 Zhong S Y, Liu H Z, Wei D H, et al. Chemical Engineering Journal, 2020, 395(1), 125054. 99 Piotrowska A, Kierzek K, Rutkowski P, et al. Journal of Analytical and Applied Pyrolysis, 2013, 102, 1. 100 Qian X Y, Zhang F Z, Zhao Y Y, et al. Frontiers in Energy Research, 2020, 8, 140. 101 Cheng J Y, Yi Z L, Wang Z B, et al. Electrochimica Acta, 2020, 337(20), 135736. 102 葛传长, 沈龙, 范拯华, 等. 中国专利, CN109921020A, 2019. 103 侯博, 汪福明, 任建国, 等. 中国专利, CN114843489A. 2020. 104 郑子桂, 易政, 谢远森. 中国专利, CN114843489A, 2022. 105 Zhang Q T, Ge S W, Wang X M, et al. RSC Advances, 2014, 4, 41649. 106 Zhang S L, Huang W, Hu P, et al. Journal of Materials Chemistry A, 2015, 3, 1896. 107 Yu M H, Dong R H, Feng X L. Journal of the American Chemical Society, 2020, 142(30), 12903. 108 Zhang Q T, Sun H X, Wang X M, et al. Energy Technology, 2013, 1(12), 721. 109 Li X W, Sun J Y, Zhao W X, et al. Advanced Functional Materials, 2022, 32(2), 2106980. 110 Wu J X, Pan Z Y, Zhang Y, et al. Journal of Materials Chemistry A, 2018, 6, 12932. 111 Paraknowitsch J P, Thomas A. Energy & Environmental Science, 2013, 6, 2839. 112 Yao Y X, Yan C, Zhang Q. Chemical Communications, 2020, 56(93), 14570. 113 Wang X W, Yang C, Li J, et al. Advanced Functional Materials, 2020, 31(11), 2009109. 114 Zhang Q T, Zhang Y, Lian F, et al. Lonics, 2022, 28, 2623. 115 Zhang Q T, Dai Q Q, Yan C, et al. Journal of Alloys and Compounds, 2017, 714(15), 204. 116 Zhang Q T, Xu Z Q, Bai Y B, et al. Journal of Alloys and Compounds, 2022, 901(25), 163657. 117 Yang C, Jin H L, Cui C X, et al. Nano Energy, 2018, 54, 192. 118 Bai L C, Sun Y F, Tang L, et al. Journal of Alloys and Compounds, 2021, 868, 159080. 119 Jin X, Wang X F, Liu Y L, et al. Small, 2022, 18(42), 2203545. 120 Kim H, Hyun J C, Kim D H, et al. Advanced Materials, 2023, 35(12), 2209128. 121 Zhang Q T, Meng Y, Bai Y B, et al. Journal of Electroanalytical Chemistry, 2020, 862(1), 114013. 122 Li C X, Kong D H, Du H M, et al. Journal of the Taiwan Institute of Chemical Engineers, 2022, 134, 104293. 123 Zhang X J, Zhu G, Wang M, et al. Carbon, 2017, 116, 686. |
[1] |
HUANG Xurui, YU Yutian, LEI Jinyong, HAO Jingxuan, YU Chuanxin, PAN Jun, YANG Yiping, LIAO Zihao, GUAN Chengzhi, WANG Jianqiang. Application of Electrically-conductive (Cu, Mn)3O4 Contact Layer on Anode-Side of SOEC[J]. Materials Reports, 2024, 38(8): 23040278-4. |
|
|
|
|