METALS AND METAL MATRIX COMPOSITES |
|
|
|
|
|
Phase Stability of L21 in Al-Cr-Fe-Mn-Ni High Entropy Alloys and Properties Study |
YI Hui1, WU Changjun1,2,*, ZHOU Chen1, LIU Ya1, LU Xiaowang3, SU Xuping1,2
|
1 Jiangsu Key Laboratory of Materials Surface Science and Technology, School of Materials Science and Engineering, Changzhou University, Changzhou 213164, Jiangsu, China 2 Jiangsu Collaborative InnovationCenter of Photovoltaic Science and Engineering, Changzhou University, Changzhou 213164, Jiangsu, China 3 School of Material Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, Jiangsu, China |
|
|
Abstract To obtain the BCC-based high entropy alloys with good combination of strength and plasticity, introducing the coherent precipitation B2 or L21 phase into the matrix has become a research hotspot. The creep resistance of L21 phase at high temperature is better than B2 phase, which is expected to be used in high temperature environment. However, the existence rule of L21 phase in BCC high entropy alloy, phase stability and its effect on the properties of the alloy was still lacking. Therefore, in the present work, series of Al0.5Cr2.5-xFeMnxNi (x=0.5—1.75), Al0.75Cr2.25-yFeMnyNi (y=0.25—1.5) and AlCr2-zFeMnz Ni (z=0.5—1.5) alloys were prepared by vacuum arc melting method. The effect of annealing at 800 ℃ or 1 000 ℃ for 120 h on the microstructure and phase composition of the alloys were investigated. The composition characte-ristics of the L21phase in these alloys are detected to be 40at%—50at% Ni, 15at%—20at% Al and Mn. BSE-EDS, XRD and TEM results show that L21 phase forms only when the alloys contain 10at%—15at% Al, and the alloy is mostly composed of BCC+L21 two phases. The BCC and L21 phases microstructure exhibits a weave-like spinodal decomposition. When Al content reaches 20at%, the alloy is composed of two phases of BCC+B2. Due to the existence of L21 phase, there is a obvious peak splitting in XRD pattern. After being annealed at 800 ℃ or 1 000 ℃, the L21 phase still stably exists, and the microstructure of the alloy coarsened and the σ or FCC phase formed. It is found that the hardness of as-cast alloys decreases with the increase of Mn content, and the hardness of alloy containing L21 phase is in the range of 463HV—558HV. Annealing at 800 ℃ reduces the hardness of alloy with 5at%—15at%Mn by 70HV—100HV, but increases the hardness of alloy with 20at%—30at% Mn by more than 200HV, due to the precipitation of hard σ phase. After annealing at 1 000 ℃, the hardness of the alloy decreases slightly due to the formation of soft FCC phase. These results will lay a foundation for the design of BCC high entropy alloys.
|
Published:
Online: 2024-06-25
|
|
Fund:National Natural Science Foundation of China (51771035, 52271005). |
|
|
1 Murty B S, Yeh J W, Ranganathan S. In:High entropy alloys, Oxford, Butterworth-Heinemann, 2014, pp.12. 2 Zhu J M, Meng J L, Liang J L. Rare Metals, 2014, 35(5), 385. 3 Shaysultanov D G, Stepanov N D, Kuznetsov A V, et al. JOM, 2013, 65(12), 1815. 4 Zhang K B, Fu Z Y, Zhang J Y, et al. Journal of Alloys and Compounds, 2010, 502(2), 295. 5 Tung C C, Yeh J W, Shun T T, et al. Materials Letters, 2007, 61(1), 1. 6 Chen M, Yuan L, Li Y. Acta Metallurgica Sinica, 2007, 43(10), 1020. 7 Tong C J, Chen Y L, Yeh J W, et al. Metallurgical and Materials Tran-sactions A, 2005, 36(4), 881. 8 Wang Y P, Li B S, Ren M X, et al. Materials Science and Engineering:A, 2008, 491(1), 154. 9 Shun T T, Hung C H, Lee C F. Journal of Alloys and Compounds, 2010, 495(1), 55. 10 Butler T M, Weaver M L. Journal of Alloys and Compounds, 2016, 674, 229. 11 Zhang C, Zhang F, Diao H, et al. Materials & Design, 2016, 109, 425. 12 Dong Y, Lu Y P, Kong J R, et al. Journal of Alloys and Compounds, 2013, 573, 96. 13 Nong Z S, Zhu J C, Zhao R D. Intermetallics, 2017, 86, 134. 14 Zhu Z G, Ma K H, Wang Q, et al. Intermetallics, 2016, 79, 1. 15 Wong S K, Shun T T, Chang C H, et al. Materials Chemistry and Phy-sics, 2018, 210, 146. 16 Shaysultanov D G, Salishchev G A, Ivanisenko Y V, et al. Journal of Alloys and Compounds, 2017, 705, 756. 17 Bai L, Wang Y Z, Lyu Y K, et al. Materials Reprots, 2020, 34(17), 17072 (in Chinese). 白莉, 王宇哲, 吕煜坤, 等. 材料导报, 2020, 34(17), 17072. 18 Tsao L C, Chen C S, Chu C P. Materials & Design, 2012, 36, 854. 19 Zhang L J, Guo K, Tang H, et al. Materials Science and Engineering:A, 2019, 757, 160. 20 Masemola K, Malatji N, Patricia Popoola A. Materials Today:Procee-dings, 2020, 28, 898. 21 Stepanov N D, Shaysultanov D G, Chernichenko R S, et al. Journal of Alloys and Compounds, 2019, 770, 194 22 Munitz A, Meshi L, Kaufman M J. Materials Science and Engineering:A, 2017, 689, 384. 23 Masemola K, Popoola P, Malatji N. Journal of Materials Research and Technology, 2020, 9(3), 5241. 24 Chuang M H, Tsai M H, Wang W R, et al. Acta Materialia, 2011, 59(16), 6308. 25 Jensen J K, Welk B A, Williams R E A, et al. Scripta Materialia, 2016, 121, 1. 26 Xin S S, Wang Z H, Li C L, et al. Materials Reprots, 2020, 34(7), 8 (in Chinese). 信思树, 王镇华, 李春玲, 等. 材料导报, 2020, 34(7), 8. 27 Li H C, Wang J, Yuan R H, et al. Materials Reprots, 2021, 35(17), 17010 (in Chinese). 李洪超, 王军, 袁睿豪, 等. 材料导报, 2021, 35(17), 17010. 28 Lu Z P, Jiang S H, He J Y, et al. Acta Metallurgica Sinica, 2016, 52 (10), 1183 (in Chinese). 吕昭平, 蒋虽合, 何骏阳, 等. 金属学报, 2016, 52(10), 1183. 29 Lu L, Shen Y, Chen X, et al. Science, 2004, 304(5669), 422. 30 Lu K, Lu L, Suresh S. Science, 2009, 324(5925), 349. 31 He J Y, Liu W H, Wang H, et al. Acta Materialia, 2014, 62, 105. 32 Strutt P R, Polvani R S, Ingram J C. Metallurgical Transactions A, 1976, 7(1), 23. 33 Lin C W, Tsai M H, Tsai C W, et al. Materials Science and Technology, 2015, 31(10), 1165. 34 Li C, Ma Y, Hao J, et al. Materials Science and Engineering:A, 2018, 737, 286. 35 Ji Y, Zhang L, Lu X, et al. Intermetallics, 2021, 138, 107339. 36 Munitz A, Salhov S, Guttmann G, et al. Materials Science and Enginee-ring:A, 2019, 742, 1. 37 Baik S I, Wang S Y, Liaw P K, et al. Acta Materialia, 2018, 157, 142. 38 Song G, Hong S J, Lee J K, et al. Scripta Materialia, 2019, 161, 18. 39 Wu C, Zhou C, Liu Y, et al. Vacuum, 2022, 199, 110934. 40 Wang M, Lu Y, Wang T, et al. Scripta Materialia, 2021, 204, 114132. 41 Yang T, Xia S, Liu S, et al. Materials Science and Engineering:A, 2015, 648, 15. 42 Sun Y, Wu C, Peng H, et al. Journal of Phase Equilibria and Diffusion, 2019, 40(5), 706. 43 Ananiadis E, Lentzaris K, Georgatis E, et al. Metals and Materials International, 2019, 26(6), 793. 44 Kao Y F, Chen T J, Chen S K, et al. Journal of Alloys and Compounds, 2009, 488(1), 57. 45 Tsai M H, Tsai K Y, Tsai C W, et al. Materials Research Letters, 2013, 1(4), 207. 46 Chen S T, Tang W Y, Kuo Y F, et al. Materials Science and Enginee-ring:A, 2010, 527(21), 5818. 47 Acet M, Duman E, Wassermann E F, et al. Journal of Applied Physics, 2002, 92(7), 3867. |
|
|
|