RESEARCH PAPER |
|
|
|
|
|
Effect of Solid Solution Temperature on Microstructure and Mechanical Properties of the Rolled Mg-2Gd-2Zn Alloy Sheets |
ZHU Tao1,2, HUANG Guangjie1, ZHOU Fang2, ZHAO Fei2
|
1 College of Materials Science and Engineering, Chongqing University, Chongqing 400044; 2 College of Materials and Metallurgy, Guizhou University, Guiyang 550025 |
|
|
Abstract Different solution treatments at 400 ℃, 430 ℃, 460 ℃, 490 ℃ and 520 ℃ were carried out on the rolled Mg-2Gd-2Zn alloy sheets under the same solution time of 0.5 h and aging treatment of 225 ℃×12 h. The effects of solution temperature on the microstructure, phases composition and mechanical properties of the alloy sheets were investigated by OM, SEM, EDS, XRD, micro-hardness and mechanical tester. Below 490 ℃, the grain size increased linearly and the number of the second phase particles decreased with the increasing solution temperature. Whereas the second phase particles suddenly increased and presented dispersed distribution at 490 ℃, which resulted in the highest micro-hardness of 77.88HV. XRD results show that the compositions of second phases have transformed from the primary phase of MgZn2 and GdZn5 at 430 ℃ to the precipitated phase of MgZn2 and GdZn at 490 ℃. Therefore, under 490 ℃, the Mg-2Gd-2Zn alloy sheets present good mechanical properties with the highest tensile strength of 262 MPa, 244 MPa and 254 MPa along the direction of RD, TD and 45°, and elongation of 34%,31% and 39% with low ductility anisotropy, respectively.
|
Published: 25 October 2017
Online: 2018-05-05
|
|
|
|
1 Sun Ming, Wu Guohua, Wang Wei, et al. Research progress of Mg-Gd Alloy[J]. Mater Rev:Rev, 2009,23(6):98(in Chinese).
孙明,吴国华,王玮,等. Mg-Gd系镁合金的研究进展[J]. 材料导报:综述篇,2009,23(6):98.
2 Ding Wenjiang, Fu Penghuai, Peng Liming, et al. Advanced magnesium alloys and their applications in aerospace[J]. Spacecraft Environment Eng, 2011,28(2):103(in Chinese).
丁文江, 付彭怀, 彭立明,等. 先进镁合金材料及其在航空航天领域中的应用[J]. 航天器环境工程, 2011,28(2):103.
3 Zhang Dongyang, Wang Linsheng, Guo Doudou. Research and application of rare earth magnesium alloy[J]. Mater Rev, 2015,29(S2):514(in Chinese).
张东阳, 王林生, 郭斗斗. 稀土镁合金性能研究及应用[J]. 材料导报,2015,29(专辑26):514.
4 Jafari Nodooshan H R, Wu Guohua, Liu Wencai, et al. Effect of Gd content on high temperature mechanical properties of Mg-Gd-Y-Zr alloy[J]. Mater Sci Eng A, 2016,651:840.
5 Liu Qiuzu, Ding Xiaofeng, Liu Yanping, et al. Analysis on micro-structure and mechanical properties of Mg-Gd-Y-Nd-Zr alloy and its reinforcement mechanism[J]. J Alloys Compd, 2017,690:961.
6 Cai Zhengxu, Tang Di, Jiang Haitao, et al. Influence of Gd concentration on texture and stretch formability of rolled Mg-Zn-Gd alloys at room temperature[J]. Rare Metal Mater Eng, 2013,42(10):2073(in Chinese).
蔡正旭, 唐荻, 江海涛, 等. 不同Gd含量对变形Mg-Zn-Gd合金织构和室温成形性能的影响[J]. 稀有金属材料与工程, 2013,42(10):2073.
7 Nie J, Gao X, Zhu S. Enhanced age hardening response and creep resistance of Mg-Gd alloys containing Zn[J]. Scr Mater, 2005,53(9):1049.
8 Huang Fei, Wu Yujuan, Peng Liming, et al. Research status and development trend of LPSO structure in Mg-Gd-Zn-(Zr) alloy[J]. Mater Rev:Rev, 2011,25(2):8(in Chinese).
黄飞, 吴玉娟, 彭立明, 等. Mg-Gd-Zn(-Zr)合金中长周期堆垛有序结构的研究现状及发展趋势[J].材料导报:综述篇, 2011,25(2):8.
9 Chen Yuan, He Zhanbing. Research progress on mechanical properties of Mg-Zn-RE alloys reinforced by quasicrystals[J]. Mater Rev:Rev, 2015,29(10):82(in Chinese).
陈远, 何战兵. 准晶增强Mg-Zn-RE合金的力学性能研究进展[J]. 材料导报:综述篇,2015,29(10):82.
10Chen Xianhua, Liu Juan, Zhang Zhihua, et al. Research status and development trend of heating treatment for magnesium alloy[J]. Mater Rev:Rev, 2011,25(12):142(in Chinese).
陈先华, 刘娟, 张志华, 等. 镁合金热处理的研究现状及发展趋势[J]. 材料导报:综述篇,2011,25(12):142.
11Tian Yuan, Huang Hua, Yuan Guangyin, et al. Nanoscale icosahedral quasicrystal phase precipitation mechanisum during annealing for Mg-Zn-Gd-based alloys[J]. Mater Lett, 2014,130:236.
12Chen Jingqu, Liu Jiangwen. Research and development of G. P. zones and aging strengthening of Mg-Zn alloys[J]. Mater Rev, 2008,22(S3):342(in Chinese).
陈敬区, 刘江文. Mg-Zn系合金G.P.区和时效强化的研究进展[J]. 材料导报,2008,22(专辑Ⅻ):342.
13Saito K, Yasuhara A, Hiraga K. Microstructural changes of Gui-nier-Preston zones in an Mg-1.5at%Gd-1at%Zn alloy studied by HAADF-STEM technique[J]. J Alloys Compd, 2011,509:2031.
14Michiaki Y, Tsutomu A, Shintaro Y, et al. Mechanical properties of warm-extruded Mg-Zn-Gd alloy with coherent 14H long periodic stacking ordered structure precipitate[J]. Scr Mater, 2005,53:799.
15Lu Fumin, Ma Aibin, Jiang Jinghua, et al. Enhanced mechanical properties and rolling formability of fine-grained Mg-Gd-Zn-Zr alloy produced by equal-channel angular pressing[J]. J Alloys Compd, 2015,643:28.
16Gröbner J, Kozlov A, Fang Xiya, et al. Phase equilibria and transformations in ternary Mg-Gd-Zn alloys[J]. Acta Mater, 2015,90:400.
17Michiaki Y, Minami S, Masahiko N, et al. Formation of 14H long period stacking ordered structure and profuse stacking faults in Mg-Zn-Gd alloys during isothermal aging at high temperature[J]. Acta Mater, 2007,55:6798.
18Yuan Guangyin, Liu Yong, Lu Chen, et al. Effect of quasicrystal and Laves phases on strength and ductility of as-extruded and heat treated Mg-Zn-Gd-based alloys[J]. Mater Sci Eng A, 2008,472:75.
19Yan H, Chen R S, Han E H. Room-temperature ductility and anisotropy of two rolled Mg-Zn-Gd alloys[J]. Mater Sci Eng A, 2010,527:3317.
20Wu D, Chen R S, Han E H. Excellent room-temperature ductility and formability of rolled Mg-Gd-Zn alloy sheets[J]. J Alloys Compd, 2011,509:2856.
21Pan Shiwei, Xin Yunchang, Huang Guangjie, et al. Tailoring the texture and mechanical anisotropy of a Mg-2Zn-2Gd plate by varying the rolling path[J]. Mater Sci Eng A, 2016,653:93. |
|
|
|