REVIEW PAPER |
|
|
|
|
|
Composite Material Theoretical Models for Dielectric Behavior of Biological Systems |
LI Gun1, ZHANG Liang1, DU Ning1, PANG Xiaofeng2,3
|
1 School of Electronic Information Engineering, Xi’an Technological University, Xi’an 710021; 2 School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054; 3 International Centre for Materials Physics, Chinese Academy of Science, Shenyang 110015; |
|
|
Abstract Biological tissue is a kind of special material. Its electrical properties are the basis of studying the design of bio-mimetic materials, the development of electrical impedance imaging and the occurrence and protection of biological effects of electromagnetic fields. At present, many composite materials theories have been applied in exploring the dielectric properties of biological systems. However, there are some limitations of the classical composite dielectric properties model in explaining the dielectric properties of biological tissue due to the changes in bio-system itself. From the perspective of applicability of several typical theoretical compo-sites models, the progress of dielectric theory used in biological system is introduced. The difference between theoretical and experimental results is summarized. Then, some shortcomings of the theoretical model of composite materials in studying the dielectric properties of biological systems are analyzed, and the corresponding suggestions are puts forward. The prospects of further development and application of the composite theoretical model in the research of electrical characteristics of biological systems are also discussed.
|
Published: 10 August 2017
Online: 2018-05-04
|
|
|
|
1 Dissado L A, Hill R M. Non-exponential decay in dielectrics and dynamics of correlated systems[J]. Nature,1979,279:685.
2 Sonja H, Daniel E, Jurg F. Modeling effective dielectric properties of materials containing diverse types of biological cells[J]. J Phys D: Appl Phys,2010,43(36):365405.
3 Hekstra D R, White K I, Socolich M A, et al. Electric-field-stimulated protein mechanics[J]. Nature,2016,540:400.
4 Amad A A S, Loula A F D, Novotny A A. A new method for to-pology design of electromagnetic antennas in hyperthermia therapy[J]. Appl Mathematical Modelling,2017,42:209.
5 Antonio E F, Stefano G, Francesco M, et al. A composite hydrogel for brain tissue phantoms[J]. Mater Des, 2016,112:227.
6 Reinecke T, Hagemeier L, Ahrens S, et al. A novel coplanar probe design for fast scanning of edema in human brain tissue via dielectric measurements[J]. Sensors Actuators B,2015,220:522.
7 Schmidt R, Webb A. A new approach for electrical properties estimation using a global integral equation and improvements using high permittivity materials[J]. J Magn Resonance,2016,262:8.
8 Morris A, Griffiths H, Gough W. A numerical model for magnetic induction tomographic measurements in biological tissues[J]. Physio-logical Measurement,2001,22(1):113.
9 Truong B C, Tuan H D, Fitzgerald A J, et al. A dielectric model of human breast tissue in Terahertz regime[J]. IEEE Trans Biomedical Eng,2015,62(2):699.
10 Rekanos I T, Papadopoulos T G. An auxiliary differential equation method for FDTD modeling of wave propagation in Cole-Cole dispersive media[J]. IEEE Trans Antennas Propagation,2010,58(11):3666.
11 Cole K S, Cole R H. Dispersion and absorption in dielectrics: I. Alternating current characteristics[J]. J Chem Phys,1941,9(4):341.
12 Alisoy H Z, Us S B, Alagoz B B. An FDTD based numerical analysis of microwave propagation properties in a skin-fat tissue layers[J]. Optik,2013,124(21):5218.
13 Sonmezoglu S, Sonmezoglu O A. Optical and dielectric properties of double helix DNA thin films[J]. Mater Sci Eng C, 2011,31(8):1619.
14 Sonja H, Daniel E, Jürg F. Modelling and validation of dielectric properties of human skin in the MHz region focusing on skin layer morphology and material composition[J]. J Phys D: Appl Phys,2012,45(2):025301.
15 Man H Y, Carvalho M J. A Monte-Carlo maplet for the study of the optical properties of biological tissues[J]. Computer Phys Commun,2007,177(12):965.
16 Schmidt C E, Baier J M. Acellular vascular tissues: Natural biomaterials for tissue repair and tissue engineering[J]. Biomaterials,2000,21(22):2215.
17 Salman S, Lanlin Z L, Volakis J L. A wearable wrap-around sensor for monitoring deep tissue electric properties[J]. IEEE Sensors J,2014,14(8):2447.
18 Mishra V, Bouayad H, Schned A, et al. A real-time electrical impedance sensing biopsy needle[J]. IEEE Trans Biomedical Eng,2012,59(12):3327.
19 Gomez T J, Fukuhara Y, He S, et al. A human-phantom coupling experiment and a dispersive simulation model for investigating the variation of dielectric properties of biological tissues[J]. Computers Biol Medicine,2015,61(C):144.
20 Zilberti L. Charge relaxation in biological tissues with extremely high permittivity[J]. IEEE Magn Lett,2016,7:1.
21 Peyman A, Gabriel C. Cole-Cole parameters for the dielectric properties of porcine tissues as a function of age at microwave frequencies[J]. Phys Medicine Biol,2010,55(15):N413.
22 El-Lakkani A. Dielectric response of some biological tissues[J]. Bioe-lectromagnetics,2001,22(4):272.
23 Angeluts A A, Balakin A V, Evdokimov M G, et al. Characteristic responses of biological and nanoscale systems in the terahertz frequency range[J]. Quantum Electron,2014,44(7):614.
24 Bertocchi C, Wang Y, Ravasio A, et al. Nanoscale architecture of cadherin-based cell adhesions[J]. Nat Cell Biol 2016,19(1):28.
25 Khalil H, Jamal D, Maryam T. Dielectric spectroscopy as a viable biosensing tool for cell and tissue characterization and analysis[J]. Biosensors Bioelectron,2013,49(10):348.
26 Peyman A, Gabriel C. Dielectric properties of rat embryo and foetus as a function of gestation[J]. Phys Medicine Biol, 2012, 57(8):2103.
27 Marzec E, Sosnowski P, Olszewski J, et al. Dielectric properties of hypothermic rat artery[J]. Colloids Surf B Biointerfaces,2013,101(1):1.
28 Sasaki K, Isimura Y, Fujii K, et al. Dielectric property measurement of ocular tissues up to 110 GHz using 1mm coaxial sensor[J]. Phys Medicine Biol,2015,60(16):6273.
29 Peyman A. Dielectric properties of tissues; variation with age and their relevance in exposure of children to electromagnetic fields; state of knowledge[J]. Prog Biophys Molecular Biol,2011,107(3):434.
30 Peyman A, Kos B, Djoki M. Variation in dielectric properties due to pathological changes in human liver[J]. Bioelectromagnetics,2015,36(8):603.
31 Jabłecka A, Olszewski J, Marzec E. Dielectric properties of keratin-water system in diabetic and healthy human fingernails[J]. J Non-Crystalline Solids,2009,355(50):2456.
32 Dewarrat F, Falco L, Mueller M, et al. A dielectric inverse problem applied to human skin measurements during glucose excursions[J]. Physiological Measurement,2011,32(32):1285.
33 Fornesleal A, Garciapardo C, Frasson M, et al. Dielectric characte-rization of healthy and malignant colon tissues in the 0.5—18 GHz frequency band[J]. Phys Medicine Biol,2016,61(20):7334.
34 Huang W H, Chui C K, Teoh S H, et al. A multiscale model for bioimpedance dispersion of liver tissue[J]. IEEE Trans Biomedical Eng,2012,59(6):1593.
35 Fuller W B. Solid mixture permittivities[J]. J Chem Phys,1955,23:1514.
36 Prasad A, Prasad K. Effective permittivity of random composite media: A comparative study[J]. Physica B,2007, 396(1-2):132.
37 Looyenga H. Dielectric constants of heterogeneous mixtures[J]. Physica,1965,31(3):401.
38 Garnett J C M. Colours in metal glasses and in metallic films[J]. Philosophical Transactions of the Royal Society of London,1904,203:385.
39 Tjia T H, Bordewijk P, Bottcher C J F. On the notion of dielectric friction in the theory of dielectric relaxation[J]. Adv Molecular Relaxation Processes,1974,6(1):19.
40 Skipetrov S E. Effective dielectric function of a random medium[J]. Phys Rev B,1999,60(18):12705.
41 Jebbor N, Bri S. Effective permittivity of periodic composite mate-rials: Numerical modeling by the finite element method[J]. J Electrostatics,2012,70(4):393.
42 Jayasundere N, Smith B V. Dielectric constant for binary piezoelectric 0-3 composites[J]. J Appl Phys,1993,73(5):2462.
43 Lichtenecker K, Rother K. Die herleitung des logarithm mischenmischungs-gesetzesaus allegemeinen prinzipien der stationaren stromung[J]. Physikalische Zeitschrift,1931,32:255.
44 Kondrat S, Kornyshev A, Stoeckli F, et al. The effect of dielectric permittivity on the capacitance of nanoporous electrodes[J]. Electrochem Commun,2013,34(5):348.
45 Petrovsky V, Jasinski P, Dogan F. Effective dielectric constant of two phase dielectric systems[J]. J Electroceram,2012, 28(2):1.
46 Xia X D, Wang Y, Zhong Z, et al. A frequency-dependent theory of electrical conductivity and dielectric permittivity for graphene-polymer nanocomposites[J]. Carbon,2017,111:221.
47 Asami K, Sekine K. Dielectric modelling of cell division for budding and fission yeast[J]. J Phys D Appl Phys,2007, 40(4):1128.
48 López-García J J, Horno J, Grosse C. Influence of the finite size and effective permittivity of ions on the equilibrium double layer around colloidal particles in aqueous electrolyte solution[J]. J Colloid Interface Sci,2014,428:308.
49 Schwan H P. Linear and nonlinear electrode polarization and biological materials[J]. Annals Biomedical Eng,1992, 20(3):269.
50 Zohdi T I, Kuypers F A, Lee W C. Estimation of red blood cell vo-lume fraction from overall permittivity measurements[J]. Int J Eng Sci,2010,48(11):1681.
51 Zhang L Y, Chen S N, Zhao Q, et al. Carbon dots as a fluorescent probe for label-free detection of physiological potassium level in human serum and red blood cells[J]. Analytica Chim Acta,2015,880:130.
52 Liu X X, Wu Y P, Wu C, et al. Study on permittivity of composites with core-shell particle[J]. Physica B,2010, 405(8):2014.
53 Biasio A D, Cametti C. Polarizability of spherical biological cells in the presence of localized surface charge distributions at the membrane interfaces[J]. Phys Rev E,2010,82(2):021917.
54 Prodan E, Camelia P, Miller J H. The dielectric response of spherical live cells in suspension: An analytic solution[J]. Biophys J,2008,95(9):4174.
55 Pang X F, Chen S D, Wang Xi H, et al. Influences of electromagnetic energy on bio-energy transport through protein molecules in living systems and its experimental evidence[J]. Int J Molecular Sci,2016,17(8):1130.
56 Mehrdad S, Lynda M T, Oliver S, et al. A new open-source toolbox for estimating the electrical properties of biological tissues in the Terahertz frequency band[J]. J Infrared Millimeter Terahertz Waves,2013,34(9):529.
57 Fujii M. Maximum frequency range limit of multi-pole Debye models of human body tissues[J]. IEEE Microwave Wireless Components Lett,2012,22(2):73.
58 Clegg J, Robinson M P. A genetic algorithm for optimizing multi-pole Debye models of tissue dielectric properties[J]. Phys Medicine Biol,2012,57(19):6227.
59 Gavrilova N D, Novik V K, Vorobyev A V, et al. Negative dielectric permittivity of poly(acrylic acid) pressed pellets[J]. J Non-Crystalline Solids,2016,452:1.
60 Xu L, Liu C, Cao Z, et al. Particle size influence on effective permittivity of particle-gas mixture with particle clusters[J]. Particuo-logy,2013,11(2):216.
61 Hermann W. The static dielectric permittivity of ionic liquids[J]. J Molecular Liquids,2014,192:185.
62 Yvanoff M, Venkataraman J. A feasibility study of tissue characte-rization using LC sensors[J]. IEEE Trans Antennas Propagation,2009,57(4):885.
63 Amooey A A. Improved mixing rules for description of the permittivity of mixtures[J]. J Molecular Liquids,2013, 180(1):31.
64 Nikonorova N A, Balakina M Y, Fominykh O D, et al. Dielectric spectroscopy and molecular modeling of branched methacrylic (co)polymers containing nonlinear optical chromophores[J]. Mater Chem Phys,2016,181:217.
65 Wolf M, Gulich R, Lunkenheimer P, et al. Broadband dielectric spectroscopy on human blood[J]. Biochimica et Biophysica Acta,2011,1810(8):727.
66 Sandu T, Vrinceanu D, Gheorghiu E. Linear dielectric response of clustered living cells[J]. Phys Rev E,2010, 81(2):021913.
67 Martellosio A, Pasian M, Bozzi M, et al. 0.5-50 GHz dielectric characterisation of breast cancer tissues[J]. Electron Lett,2015,51(13):974.
68 Peyman A, Holden S J, Watts S, et al. Dielectric properties of porcine cerebrospinal tissues at microwave frequencies: In vivo, in vitro and systematic variation with age[J]. Phys Medicine Biol,2007,52(8):2229.
69 Li G. Dielectric properties of rat blood in coagulation process[J]. Appl Mech Mater,2013,373:1007.
70 Raicu V, Saibara T, Enzan H, et al. Dielectric properties of rat liver in vivo: Analysis by modeling hepatocytes in the tissue architecture[J]. Bioelectrochem Bioenergetics,1998,47(2):333.
71 Peon-Fernandez J, Martin-Herrero J, Banerji N, et al. Numerical study of effective permittivity in composite systems[J]. Appl Surf Sci,2004,226(1):78.
72 Zakharov P, Dewarrat F, Caduff A, et al. The effect of blood content on the optical and dielectric skin properties[J]. Physiological Measurement,2011,32(1):131.
73 Caroline B R, George R, Adam P G, et al. Terahertz time domain spectroscopy of human blood[J]. IEEE Trans Terahertz Sci Tech-nol,2013,17(4):774. |
|
|
|