REVIEW PAPER |
|
|
|
|
|
Current Research Status of Dynamic Recrystallization Model of Metallic Materials |
SUN Yu1, ZHOU Chen1, WAN Zhipeng1, REN Lili2, HU Lianxi1
|
1 National Key Laboratory for Precision Hot Processing of Metals, Harbin Institute of Technology, Harbin 150001; 2 China Nuclear Industry 23 Construction Co., Ltd, Beijing 101300 |
|
|
Abstract Dynamic recrystallization is an effective approach to refine grains, control texture and improve plastic deformation capacity. The mechanical properties of metal materials are directly determined by the microstructure formed by dynamic recrystallization. Therefore, an increasing number of literature concerning dynamic recrystallization have been addressed throughout the world. In the present work, the physical basis for dynamic recrystallization is reviewed. The dislocation density model, kinetic model and flow behaviors, including typical material responses to plastic deformation and the influencial factors are systematically discussed in detail. Finally, the research status of dynamic recrystallization is deeply analyzed and the developing prospect is summarized.
|
Published: 10 July 2017
Online: 2018-05-04
|
|
|
|
1 Li Y P, Song R B, Wen E D, et al. Hot deformation and dynamic recrystallization behavior of austenite-based low-density Fe-Mn-Al-C steel [J]. Acta Mater,2016,29(5):441. 2 Liu Chuming, Liu Zijuan, Zhu Xiurong, et al. Research and deve-lopment progress of dynamic recrystallization in pure magnesium and its alloys [J]. Chin J Nonferrous Met,2016,16(1):1(in Chinese). 刘楚明, 刘子娟, 朱秀荣, 等. 镁及镁合金动态再结晶研究进展[J]. 中国有色金属学报,2016,16(1):1 3 Sakai T, Jonas J J. Overview No. 35, dynamic recrystallization: Mechanical and microstructural considerations [J]. Acta Metall,1984,32:189. 4 Sakai T, Akben M G, Jonas J J. Dynamic recrystallization during the transient deformation of a vanadium microalloyed steel [J]. Acta Metall,1983,31:631. 5 Luo Jiao, Li Miaoquan, Li Hong. Microstructural simulation during plastic deformation [J]. Mater Rev,2008,22(3):102(in Chinese). 罗皎, 李淼泉, 李宏. 塑性变形时的微观组织模拟[J]. 材料导报,2008,22(3):102. 6 Galindo E I, Rivera P E J. Grain size evolution during discontinuous dynamic recrystallization [J]. Scr Mater,2014,72:1. 7 Huang K, Loge R E. A review of dynamic recrystallization pheno-mena in metallic materials [J]. Mater Des,2016,111:548. 8 Lukasz M, Mateusz S, Maciej P. Perceptive comparison mean full field dynamic recrystallization models [J]. Archives Civil Mech Eng,2016,16(4):569. 9 Zhanna Y, Andrey B, Rustam K. Microstructural evolution of a 304-type austenitic stainless steel during rolling at temperatures of 773—1273 K [J]. Acta Mater,2015,82(1):244. 10 Chen F, Feng G W, Cui Z S. Mathematical modeling of critical condition for dynamic recrystallization [J]. Procedia Eng,2014,81:486. 11 Luton M J, Sellars C M. Dynamic recrystallization in nickel and nickel-iron alloys during high temperature deformation [J]. Acta Metall,1969,17(8):1033. 12 Poliak E I, Jonas J J. Initiation of dynamic recrystallization in constant strain rate hot deformation [J]. Iron Steel Institute Japan Int,2003,43(5):684. 13 Poliak E I, Jonas J J. A one-parameter approach to determining the critical conditions for the initiation of dynamic recrystallization [J]. Acta Mater,1996,44(1):127. 14 Sousa A C M, Selih J, Gerber A G, et al. Heat and fluid flow simulation of the melt-drag single-roll strip casting process [J]. J Mater Process Technol,1992,34(1):473. 15 Mirzadeh H, et al. Prediction of the critical conditions for initiation of dynamic recrystallization [J]. Mater Des,2010,31(3):1174. 16 Liu X G, Zhang L G, Qi R S, et al. Prediction of critical conditions for dynamic recrystallization in 316LN austenitic steel [J]. J Iron Steel Res,2016,23(3):238. 17 Fang B, Ji Z, Liu M, et al. Critical strain and models of dynamic recrystallization for FGH96 superalloy during two-pass hot deformation [J]. Mater Sci Eng A,2014,593:8. 18 Chen L, Zhang Y J, Li F, et al. Modeling of dynamic recrystallization behavior of 21Cr-11Ni-N-RE lean austenitic heat-resistant steel during hot deformation [J]. Mater Sci Eng A,2016,663:141. 19 Johnson W A, Mehl R F. Reaction kinetics in processes of nucleation and growth [J]. Trans Am Institute Mining,1939,135:416. 20 Avrami M. Kinetics of phase change. Ⅱ: Transformation-time relations for random distributuin of nuclei [J]. J Chem Phys,1940,8:212. 21 Sellars C M. Modelling microstructural development during hot rol-ling [J]. Mater Sci Technol,1990,6(11):1072. 22 Yada H. Prediction of microstructural changes and mechanical pro-perties in hot strip rolling [J]. Accelerated Cool Rolled Steel,1987,3:105. 23 Kim S I, Lee Y, Lee D L, et al. Modeling of AGS and recrystallized fraction of microalloyed medium carbon steel during hot deformation [J]. Mater Sci Eng A,2003,355:384. 24 Liu J,et al. A new kinetics model of dynamic recrystallization for magnesium alloy AZ31B [J]. Mater Sci Eng A,2011,529:300. 25 Serajzadeh S, Taheri A K. Prediction of flow stress at hot working condition [J]. Mech Res Commun,2003,30:87. 26 Wan Z P, Sun Y, Hu L X, et al. Experimental study and numerical simulation of dynamic recrystallization behavior of TiAl-based alloy [J]. Mater Des,2017,122(15):11. 27 Gao Zhigang, Guo Hongzhen, Miao Xiaopu, et al. Work-hardening behavior of TC18 titanium alloy during hot processing associating K-M and E-M criterion [J]. Trans Mater Heat Treatment,2015,36(S2):223(in Chinese). 高志刚, 郭鸿镇, 苗小浦, 等. 协同K-M和E-M准则的TC18钛合金高温变形加工硬化行为[J]. 材料热处理学报,2015,36(S2):223. 28 Sakai T. Dynamic recrystallization microstructures under hot wor-king conditions [J]. J Mater Process Technol,1995,1:349. 29 Bergstro Y. A dislocation model for stress-train behavior of polycrystalline alpha-Fe with special emphasis on variation of densities of mobile and dislocations [J]. Mater Sci Eng A,1970,5(4):193. 30 Mecking H, Kocks U F. Kinetics of flow and strain-hardening [J]. Acta Metall,1981,29(11):1865. 31 Estrin Y, Mecking H. A unified phenomenological description of work-hardening and creep based on one-parameter models [J]. Acta Metall,1984,32(1):57. 32 Laasraoui A, Jonas J J. Recrystastallization of austenite after deformation at high temperature and strain rates-analysis and modelling [J]. Metall Trans A,1991,22(7):151. 33 Han Yawei, Su Juanhua, Ren Fengzhang, et al. Simulation of microstructure evolution of hot-deformed commercial pure titanium by Laasraoui-Jonas dislocation density model [J]. Trans Mater Heat Treatment,2014,35(11):210(in Chinese). 韩亚玮, 苏娟华, 任凤章, 等. 应用Laasraoui-Jonas 位错密度模型模拟工业纯钛微观组织演变[J]. 材料热处理学报,2014,35(11):210. 34 Gourdet S, Montheillet F. A model of continuous dynamic recrystallization [J]. Acta Mater,2003,51:2685. 35 Liu Xiao, Zhu Biwu, Li Luoxing. Dynamic recrystallization of AZ31 Magnesium alloy simulated by Laasraoui-Jonas dislocation equation coupled cellular automata method [J]. Chin J Nonferrous Met,2013,23(4):898(in Chinese). 刘筱, 朱必武, 李落星. Laasraoui-Jonas位错密度模型结合元胞自动机模拟AZ31镁合金动态再结晶[J]. 中国有色金属学报,2013,23(4):898. 36 Julien D J, Denis S, Olivier F, et al. 3D numerical modeling of dynamic recrystallization under hot working: Application to Inconel 718 [J]. Mater Sci Eng A,2015,646:33. 37 Ding R, Guo Z X. Microstructural modeling of dynamic recrystallization using an extended cellular automaton approach [J]. Comput Mater Sci,2002,23:209. 38 Roberts W, Ahlblom B. Nucleation criterion for dynamic recrystallization during hot working [J]. Acta Metall,1978,26(5):801. 39 Liu Y X, Lin Y C, Li H B, et al. Study of dynamic recrystallization in a Ni-based superalloy by experiments and cellular automaton mo-del [J]. Mater Sci Eng A,2015,626,432. 40 Zhao P Y, Thaddeus S E L, Wang Y Z, et al. An integrated full-field model of concurrent plastic deformation and microstructure evolution: Application to 3D simulation of dynamic recrystallization in polycrystalline copper [J]. Int J Plast,2016,80:38. |
|
|
|