Materials Reports 2021, Vol. 35 Issue (Z1): 467-472 |
METALS AND METAL MATRIX COMPOSITES |
|
|
|
|
|
Research Status and Prospect of Special Mold Flux for High Titanium Steel |
WANG Xingjuan1,2, QU Shuo1,2, LIU Ran1, ZHU Liguang3, PIAO Zhanlong2,4, DI Tiancheng1,2, WANG Yu1,2
|
1 College of Metallurgy and Energy, North China University of Science and Technology, Tangshan 063210, China 2 Hebei Engineering Research Center of High Quality Steel Continuous Casting, Tangshan 063000, China 3 School of Materials Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China 4 School of Metallurgical and Ecological Engineering,University of Science and Technology Beijing, Beijing 100083,China |
|
|
Abstract With the continuous development of the steel industry, machinery, construction, automobile, aviation, locomotive and other industries have also made great progress. At the same time, the use requirements and service conditions of steel materials are becoming more and more demanding, and the properties of steel gradually expand to high strengthening, high toughness, wear resistance, heat resistance and corrosion resistance, easy welding and so on. High titanium steel with low cost and high added value has been paid more attention. Ti is added to the steel as a micro-alloy element or alloy element. Ti has a strong affinity with C, N, S, which can refine the grain, improve toughness, wear resistance and intergranular corrosion resistance. But, Ti is also an easy-to-oxidize element, and it easily reacts with protective powder during the continuous casting process to form TiN, Ti(CN), TiO2 and other high-melting compounds, which seriously deteriorates the metallurgical performance of the mold flux, and at the same time forms "floater" on the steel surface of the mold, which hinders the flow of mold flux between the billet shell and the mold, making high-titanium steel difficult to achieve multi-furnace continuous casting, the casting billet appears a series of surface defects such as sags, cracks, slag inclusions, and even causes breakout by steaking. This article summarizes the research progress of high-titanium steel protection slag, and introduces the reaction behavior of Ti at the mold steel slag interface during the casting of high-titanium steel and the influence of Ti on the mold flux after entering the mold flux. It is proposed to draw on the experience of low (non-)reactive CaO-Al2O3 based mold powder for high-aluminum steel, and make full use of the role of Ti in the mold powder, and use TiO2 as a replacement component of fluorine to develop fluorine-free mold powder. The purpose is to develop fluorine-free mold flux for high-titanium steel to provide important basic data and theoretical support, accelerate the industrialization of green and environmental mold flux, and promote technological progress and technological innovation in the production process of high-titanium steel in China.
|
Published: 16 July 2021
|
|
Fund:National Natural Science Foundation of China(5197413,51774141), Natural Science Foundation of Hebei Province(E2019209543). |
About author:: Xingjuan Wang is a professor at the College of Metallurgy and Energy,North China University of Science and Technology.In 2002,she graduated from Hebei Polytechnic University with a bachelor's degree in College of Metallurgy and Energy. In 2005,she graduated from the same school with a master's degree.And she received her Ph.D. degree in University of Science and Technology Beijing in 2013. Her research interests are technical innovation and process optimization for defect-free solidification and high efficiency continuous casting. |
|
|
1 王国栋. 钢铁, 2015, 50(9), 1. 2 Ma Xiaotian, Ye Liping, Qi Congcong, et al. Journal of Environmental Management, 2018, 224(15), 10. 3 https://www.ndrc.gov.cn/fgsj/tjsj/cyfz/zzyfz/202006/t20200630_1232430.html, 2020. 4 Li H F, Duan Q Q, Zhang P, et al. Engineering Fracture Mechanics, 2019, 211(15), 362. 5 刘莹莹, 陈子勇, 金头男, 等. 材料导报, 2018, 32(11), 1863. 6 谭建兴, 武鹏, 刘睿智, 等. 特殊钢, 2018, 39(3), 28. 7 Peng Z W, Li L J, Gao J X, et al.Materials Science & Engineering A, 2016, 657(7), 413. 8 Zhang L, et al.Journal of Non-Crystalline Solids, 2019, 511(1),41. 9 王杏娟, 武宾宾, 朱立光, 等.钢铁钒钛, 2017, 38(4), 135. 10 王杏娟, 田阔, 樊亚鹏, 等.材料导报, 2018, 32(12), 2100. 11 罗海文, 赵沛, 成国光, 等.钢铁, 2000, 35(11), 51. 12 卜勇, 胡本芙, 高桥平七郎, 等. 钢铁, 2002, 37(11), 48. 13 李永良, 陈梦谪.北京师范大学学报:自然科学版, 1999, 35(1),38. 14 杨作宏, 陈伯春.甘肃冶金, 2000, 9(4),20. 15 舒玮, 王学敏, 李书瑞, 等. 金属学报, 2010, 46(8),997. 16 谢利群, 毛新平, 霍向东. 冶金丛刊, 2005, 1(2), 1. 17 陈松军. 钛微合金钢组织变化和析出物控制研究. 硕士学位论文, 江苏大学, 2016. 18 高桥涉, 王晓帆. 国外金属加工, 1995, 7(1), 41. 19 姚思佳, 孙扬善, 薛烽, 等. 铸造, 2010, 59(3), 284. 20 梁小凯, 孙新军, 雍岐龙, 等.钢铁研究学报, 2016, 28(9), 71. 21 滕铝丹, 曹静, 张拓, 等. 铸造, 2017, 66(12), 1317. 22 赵朴. 钢铁研究学报, 1996, 8(3), 33. 23 裴丙红. 特钢技术, 2007, 14(4), 26. 24 Yu Z G, Leng H Y, Wang L J, et al. Ceramics International, 2019, 45(6), 7180. 25 Zhao H M, Wang X H, Zhang J M. Journal of University of Science & Technology Beijing, 2004, 78(2), 190. 26 Lei Yun, Xie Bing, Ma Wenhui.Journal of Iron and Steel Research International, 2016, 23(4), 322. 27 Gao Q, Min Y, Liu C J, et al. Journal of Iron and Steel Research International, 2017, 24(11), 1152. 28 Wang H M, Yang L L, Li G R. Journal of Iron and Steel Research, International, 2013, 20(16), 21. 29 赵俊学, 赵忠宇, 尚南, 等.钢铁, 2018, 53(10), 8. 30 Zahedi H. Baosteel Technology, 2008, 11(3), A93. 31 余志友.连铸, 2014, 22(2), 1. 32 杨辉, 陈根保, 戴伟, 等.云南冶金, 2017, 39(5), 21. 33 郑宏光, 陈伟庆, 陈宏, 等.特殊钢, 2004, 25(4), 50. 34 杨咏阶, 刘玉爱, 张向勇, 等. 特殊钢, 2018, 39(3), 9. 35 Jun Y, Li-Jiang W, Jian-Hua S. In: 4th International Conference on Continuous Casting of Steel in Developing Countries. Beijing, 2008, pp. 244. 36 Scoczylas G, Dusgupta A, Bommaraju R. Continuous Casting, 1995, 7, 197. 37 Bramfitt B L.Metallurgical & Materials Transactions B, 1970, 1(7), 1987. 38 赵克文, 蔡开科, 刘新华. 钢铁研究学报, 1989, 1(3) , 21. 39 郑宏光. 宝钢技术, 2008, 26(1), 50. 40 李刚, 魏瑞航, 游定方. 重庆大学学报(自然科学版), 1993, 16(2), 79. 41 He S P, Huang Q Y, Zhang G X, et al. Journal of Iron and Steel Research, International, 2011, 18(7), 15. 42 谢兵, 王谦, 王雨,等. 钢铁, 2003, 38(2), 19. 43 王谦, 谢兵, 迟景灏. 连铸, 1996, 4(3), 11. 44 徐文清, 王日红. 连铸, 2003, 11(4), 3. 45 郑展祥. 含钛铁素体不锈钢连铸结晶器内渣金反应的动力学研究. 硕士学位论文,东北大学, 2010. 46 刘承军, 孙丽枫, 毛天成, 等.工业加热, 2007, 36(6), 23. 47 Le J , Zhou Z H, Pan W L, et al. Metallurgical and Materials Transactions B, 2020,51(1), 85. 48 Hu K, Lv X, Yu W, et al. Metallurgical and Materials Transactions B, 2019, 50(6),2982. 49 谢兵. 连铸结晶器保护渣相关基础理论的研究及其应用实践. 博士学位论文, 重庆大学, 2004. 50 李德强. 工业加热, 2009, 38(1) , 51. 51 Zhen Y L, Zheng G H, Chou K C, et al. Canadian Metallurgical Quarterly, 2015, 54(3), 340. 52 Zhou L, Wang W, Wei J, et al.ISIJ international, 2013, 53(4), 665. 53 刘永庆, 唐萍, 文光华, 等. 中国有色金属学报, 2006, 16(3), 550. 54 韩文殿, 仇圣桃, 张兴中, 等. 钢铁研究学报, 2007, 19(3), 14. 55 陈卓, 何生平, 等. 四川冶金, 2017, 39(5), 21. 56 Qi X, Wen G H, Tang P.Journal of Iron and Steel Research Internatio-nal, 2010, 17(6), 10. 57 Arefpour A R, Monshi A, Khayamian T, et al.Refractories & Industrial Ceramics, 2013, 54(3), 203. 58 Scheller P R.Ironmaking and Steelmaking, 2002, 29(2), 154. 59 Jimbo I, Ozturk B, Feldbauer S,et a1. Steelmaking Conference Procee-dings, 1996, 27(4), 672. 60 Pretorius E B, Nunnington R C. Ironmaking and Steelmaking, 2002, 29(2), 133. 61 武守防, 李宏, 王恭亮, 等. 特殊钢, 2006, 27(5), 15. 62 Soltan Attar S, Monshi A, Meratian M.International Journal of Iron & Steel Society of Iran, 2011, 8(1), 5. 63 Kishi T, Tsuboi H, Takeuchi H, et al.Nippon Steel Technical Report, 1987, 34, 11. 64 Nakada, H, Nagata K. ISIJ International, 2006, 46(3), 441. 65 郭亭虎, 孙长悌, 赵施格. 钢铁研究学报, 1988, 8(S1), 131. 66 郭亭虎, 孙长悌, 赵施格. 钢铁, 1988, 13(11), 20. 67 郝占全, 陈伟庆, Carsten Lippold, 等. 特殊钢, 2009, 30(5), 13. 68 郝占全, 陈伟庆, Carsten Lippold, 等.过程工程学报, 2009, 9(3), 514. 69 Wang Z, Shu Q F , Hou X M , et al.Ironmaking & Steelmaking, 2012, 39(3), 210. 70 Wang Z, Shu, Q F& Chou, K. Metall and Materi Trans B, 2013,44, 606. 71 冀成庆, 谢兵, 雷云, 等. 北京科技大学学报, 2010, 32(3), 306. 72 王谦, 鲁永剑, 何生平. 连铸, 2011, 19(S1), 484. 73 Tang P, Wen G H. CN. patent, CN03117824.3, 2004 74 Li P, Wang Q, He S P, et al .CN. patent, CN105642849A, 2016. 75 Li G R,Wang H M. CN. patent, CN103042187A,2013. 76 Wang W L, Zhou L J, Zhao H, et al.CN. patent, CN104399922A, 2015. |
|
|
|