| POLYMERS AND POLYMER MATRIX COMPOSITES |
|
|
|
|
|
| Molecular Dynamics Simulation on the Thermodynamic Properties of Polypropylene Modified with Nanometer ZrO2 |
| LI Yasha1,2,*, WU Diao1,2, WANG Fuda1, ZHOU Chaowei1, WANG Guibin1, DONG Heng1
|
1 School of Electrical and New Energy, China Three Gorges University, Yichang 443002, Hubei, China 2 Hubei Transmission Line Engineering Technology Research Center, Yichang 443002, Hubei, China |
|
|
|
|
Abstract Polypropylene (PP) is widely used in metallized film capacitors due to its good chemical stability, heat resistance, and electrical insulation properties. However, its loss increases at high temperatures, which limits its application in the field of high-performance energy storage devices. In view of the limitations of experimental research and the insufficiency of research on the thermodynamic properties of PP with nano-doping, this study carried out molecular dynamics simulations. Pure PP, ZrO2/PP composite systems with different mass fractions and composite systems containing water molecules were constructed for analysis. The research shows that nano-ZrO2 doping can effectively improve the thermodynamic properties of PP. Among them, the ZrO2(7%)/PP composite system has the most significant effect. At room temperature, the thermal conductivity was increased by 29.41%, the glass transition temperature was increased by 15.28%, the mechanical modulus was improved, and the free volume and mean square displacement were decreased. Moreover, the doping of nano-ZrO2 occupies the free volume and restricts the movement of molecular chains, and the weakening effect of the ZrO2(7%)/PP composite system is the strongest. The diffusion rate of water molecules increases with the increase of temperature, while the doping of nano-ZrO2 can reduce its diffusion coefficient, making its diffusion in the doped system slower than that in the undoped system. The research results provide theoretical support for the application of nano-ZrO2 in metallized films and a reference for improving the thermodynamic properties of polypropylene.
|
|
Published: 25 January 2026
Online: 2026-01-27
|
|
|
|
|
1 Choi S W, Kim H K, Kim Y S. Polymer Compsites, 2024, 45(16), 15228. 2 Li Zhiyuan, Wang Jingran, Xu Zhe, et al. High Voltage Engineering, 2023, 49(7), 2929 (in Chinese). 李志元, 王镜然, 徐哲, 等. 高电压技术, 2023, 49(7), 2929. 3 Wang T, Zhang G, Li D, et al. Journal of Applied Physics, 2020, 128(2), 025101. 4 Chen Mengjiao, Wu Bin, Xia Ru, et al. Journal of Anhui University (Natural Science Edition), 2024, 48(2), 68 (in Chinese). 陈梦娇, 伍斌, 夏茹, 等. 安徽大学学报 (自然科学版), 2024, 48(2), 68. 5 Ismaeilimoghadam S, Shamsian M, Bayat Kashkoli A, et al. Iranian Journal of Wood and Paper Science Research, 2015, 30(WINTER 4), 674. 6 Medellín-Banda D I, Navarro-Rodríguez D, Fernández-Tavizón S, et al. Materials Today Communications, 2019, 21, 100695. 7 Guo Jiang, Xu Mengyi, Li Hui, et al. China Plastics, 2024, 38(3), 44 (in Chinese). 国江, 许梦伊, 李辉, 等. 中国塑料, 2024, 38(3), 44. 8 Ding Mi, Zou Liang, Zhang Li, et al. Transactions of China Electrotechnical Society, 2021, 36(23), 5046(in Chinese). 丁咪, 邹亮, 张黎, 等. 电工技术学报, 2021, 36(23), 5046. 9 Yu Q, Luo M, Chen H, et al. Colloid Polymer Science, 2022, 300(7), 825. 10 Bian J J, Nicola L. Tribology International, 2020, 156, 106837. 11 Zhang J, Xu Q, Gao L, et al. Applied Surface Science, 2020, 511, 145620. 12 Liu Bowen, Lv Fangcheng, Fan Xiaozhou, et al. Polymers, 2022, 14(15), 3134. 13 Wang R, Xiong Y, Yue M, et al. Journal of Cleaner Production, 2020, 276. 14 Huang K, Zeng T T, Shao J D, et al. Laser & Optoelectronics Progress, 2025(1), 56 (in Chinese). 黄凯, 曾婷婷, 邵建达, 等. 激光与光电子学进展, 2025(1), 56. 15 Wu Zhiang. Research on the preparation and mechanical properties of modified polypropylene foaming materials. Master’s Thesis, Ningbo University, China, 2020 (in Chinese). 吴志昂. 改性聚丙烯发泡材料的制备及其力学性能研究. 硕士学位论文, 宁波大学, 2020. 16 Mansouri L, Djebbar A, Khatir S, et al. Journal of Composite Materials, 2019, 53(25), 3629. 17 Zhang Q F, Zhou K, Li K L, et al. Proceedings of the CSEE, 2021, 41(16), 5758 (in Chinese). 张桥峰, 周凯, 李康乐, 等. 中国电机工程学报, 2021, 41(16), 5758. 18 Rong Liping. Molecular simulation of small molecule gases diffusion in common packaging polymers. Master’s Thesis, Shandong University, China, 2011(in Chinese). 荣丽萍. 分子模拟研究小分子气体在常用包装聚合膜中的扩散行为. 硕士学位论文, 山东大学, 2011. 19 Liu Cheng. Research on the properties of lithium hydride and the design method of its protective film. Master’s Thesis, China West Normal University, China, 2022 (in Chinese). 刘城. 氢化锂的性能及其防护膜设计方法研究. 硕士学位论文, 西华师范大学, 2022. 20 Liang Ying, Gao Ting, Liu Chao, et al. Transactions of China Electrotechnical Society, 2020, 35(7), 1575 (in Chinese). 梁英, 高婷, 刘超. 电工技术学报, 2020, 35(7), 1575. 21 Fabian D, Karsten R, Christian S. Journal of Polymer Research, 2022, 29(11), 8. 22 Mashukov I N, Kharaev M A, Kyarov A A, et al. Polymer Science, Series D, 2019, 12(3), 305. 23 Belov A N, Tarasenkov N A, Tebeneva A N, et al. Polymer Science, Series B, 2018, 60(3), 405. 24 Biao J, Qiang F, Ruizhe L, et al. Journal of Physics: Conference Series, 2023, 2433(1), 167. 25 Li Yasha, Tian Ze, Wang Lumin, et al. Materials Reports, 2024, 39(2), 261 (in Chinese). 李亚莎, 田泽, 王璐敏, 等. 材料导报, 2024, 39(2), 261. 26 Fukuyama Y, Senda M, Kawai T, et al. Journal of Thermal Analysis and Calorimetry, 2014, 117(3), 1 397. 27 Fu Yizheng, Liu Yaqing, Zhang Liyan, et al. Journal of Molecular Science, 2009, 25(1), 1 (in Chinese). 付一政, 刘亚青, 张丽燕, 等. 分子科学学报, 2009, 25(1), 1. 28 Fan Peng, Zhou Dengbo, Yan Haijian, et al. High Voltage Technology, 2017, 43(9), 2875 (in Chinese). 凡朋, 周登波, 严海健, 等. 高电压技术, 2017, 43(9), 2875. 29 Li Yasha, Wang Jiamin, Xia Yu, et al. Journal of Composite Materials, 2024, 41(1), 485(in Chinese). 李亚莎, 王佳敏, 夏宇, 等. 复合材料学报, 2024, 41(1), 485. 30 Zhang Xiaoxing, Chen Xiaoyu, Xiao Song, et al. High Voltage Technology, 2018, 44(3), 740 (in Chinese). 张晓星, 陈霄宇, 肖淞, 等. 高电压技术, 2018, 44(3), 740. 31 Shintani T, Shimazu A, Yahagi S, et al. Journal of Applied Polymer Science, 2009, 113(3), 1757. 32 Zhang Tao, Zhou Haohan, Chen Min, et al. Insulating Materials, 2024, 57(2), 38 (in Chinese). 张涛, 周浩翰, 陈敏, 等. 绝缘材料, 2024, 57(2), 38. 33 Jannat A, Junqin S, Jie L, et al. Tribology Transactions, 2021, 64(4), 721. 34 Allen M P, Tildesley D J. Computer simulation of liquids. Oxford:Cla-rendon Press, UK, 1987, pp.9. 35 Liu Yali. Investigation on crystalline morphology and dielectric properties of PP/MMT nanocomposites. Master’s Thesis, Harbin University of Science and Technology, China, 2010 (in Chinese). 刘亚丽. PP/MMT纳米复合材料结晶形态与介电性能研究. 硕士学位论文, 哈尔滨理工大学, 2010. |
|
|
|