INORGANIC MATERIALS AND CERAMIC MATRIX COMPOSITES |
|
|
|
|
|
Experimental Study on Carbon Fixation of Circulating Fluidized Bed Multi-solid Waste Fly Ash-based Cement Mortar |
YAN Wei1, LI Chi1,2,3, XING Yuanhao1, GAO Yu1,2,3,*
|
1 College of Civil Engineering, Inner Mongolia University of Technology, Hohhot 010051, China 2 Inner Mongolia Engineering Research Center of Geological Technology and Geotechnical Engineering, Inner Mongolia University of Technology, Hohhot 010051, China 3 Key Laboratory of Geological Hazards and Geotechnical Engineering Defense in Sandy and Drought Regions at Universities of Inner Mongolia Autonomous Region, Inner Mongolia University of Technology, Hohhot 010051, China |
|
|
Abstract In order to improve the utilization rate of circulating fluidized bed (CFB) solid waste—fly ash (CFB-FA), slag (CFB-S) and desulfurization gypsum (CFB-FGD), and reduce the amount of cement used in cement building materials. In this study, CFB-FA, CFB-S and CFB-FGD were used to replace 40% cement to prepare circulating fluidized bed multi-solid waste fly ash-based cement mortar. The mechanical properties were improved based on carbonization curing technology, and the carbon fixation effect was analyzed. The test results show that:(ⅰ) the compressive strength of the mortar specimen prepared by replacing 40% of cement with the three materials in m(CFB-FA)∶m(CFB-S)∶m(CFB-FGD)=3∶2∶1 is 43.8 MPa with a carbonization curing age of 7 days, which can satisfy the compressive strength requirement of the standard ordinary cement mortar with an oridinary curing age of 28 days. (ⅱ) By comparing the phase composition and microstructure of fly ash-based cement mortar before and after carbonization, a large amount of CaCO3 is generated on the surface and inside of the specimen with a carbonization curing age of 28 days. (ⅲ) The calculation and analysis show that the CO2 absorption with an oridinary curing age of 28 days is 21.8%, which is about 10% higher than the natural carbon absorption of ordinary cement mortar. This circulating fluidized bed multi-solid waste fly ash-based cement mortar not only has high mechanical properties after carbonization curing, but also has outstanding carbon fixation ability, which has certain engineering application value and “carbon neutrality” effect.
|
Published: 10 May 2025
Online: 2025-04-28
|
|
|
|
1 Zhang X L, Huang X D, Zhang D, et al. Journal of Management World, 2022, 38(1), 35(in Chinese). 张希良, 黄晓丹, 张达, 等. 管理世界, 2022, 38(1), 35. 2 Li Z Y. Inner Mongolia Science Technology and Economy, 2023(15), 3(in Chinese). 李泽艳. 内蒙古科技与经济, 2023(15), 3. 3 Dong Q X, Dong F L, Geng Y, et al. Scientific Management Research, 2022, 40(6), 77(in Chinese). 董秋霞, 董樊丽, 耿涌, 等. 科学管理研究, 2022, 40(6), 77. 4 Bhatt A, Priyadarshini S, Mohanakrishnan A A, et al. Case Studies in Construction Materials, 2019, 11, e00263. 5 Yan P Y. Journal of the Chinese Ceramic Society, 2007(S1), 167(in Chinese). 阎培渝. 硅酸盐学报, 2007(S1), 167. 6 Lu L H, Pan G S, Chen S L, et al. Journal of Shenyang University of Technology, 2009, 31(1), 107(in Chinese). 鲁丽华, 潘桂生, 陈四利, 等. 沈阳工业大学学报, 2009, 31(1), 107. 7 Zhang Z M, Gui L Z, Liao D C, et al. Energy Environmental Protection, 2023, 37(4), 1(in Chinese). 张志明, 桂联政, 廖达琛, 等. 能源环境保护, 2023, 37(4), 1. 8 Li J B, Ji L, Yu H, et al. Acta Scientiae Circumstantiae, 2023, 43(2), 414(in Chinese). 李家碧, 纪龙, 于海, 等. 环境科学学报, 2023, 43(2), 414. 9 Chen J, Zuo X B, Zou Y X, et al. Materials Reports, 2024, 38(22), 161(in Chinese). 陈君, 左晓宝, 邹欲晓, 等. 材料导报, 2024, 38(22), 161. 10 Liu F Q, Guo W D, Chen E Z, et al. Journal of Chongqing University of Technology(Natural Science), 2024, 38(4), 108(in Chinese). 刘富强, 郭伟东, 陈二忠, 等. 重庆理工大学学报(自然科学), 2024, 38(4), 108. 11 Meng X R, Liu Y T, Chen B, et al. Materials Reports, 2024, 38(17), 29(in Chinese). 孟祥瑞, 刘源涛, 陈兵, 等. 材料导报, 2024, 38(17), 29. 12 Chen D H, Qin H Y, Li C, et al. Mining Safety & Environmental Protection, 2024, 51(4), 146(in Chinese). 陈登红, 秦海月, 李超, 等. 矿业安全与环保, 2024, 51(4), 146. 13 Li X Q, Chen Q B, et al. Construction and Building Materials, 2012, 36, 182. 14 Zhang Y, Wu D, Wang Y, et al. Materials, 2023, 17(1), 113. 15 Wang E. Clean Coal Technology, 2016, 22(4), 26 (in Chinese). 王恩. 洁净煤技术, 2016, 22(4), 26. 16 Li R L. Characteristics of cement with ultrafine circulating fluidized bed fly ash. Ph. D. Thesis, China University of Mining and Technology-Beijing, China, 2018(in Chinese). 李端乐. 掺超细循环流化床粉煤灰水泥的特性研究. 博士学位论文, 中国矿业大学(北京), 2018. 17 Zhang W, Gu J R, Zhou X, et al. Journal of Cleaner Production, 2021, 316, 128355. 18 Ren K, Ma S X, Feng Y C, et al. Fuel, 2023, 342, 127843. 19 Mi J F, Ma X F. Zhongguo Dianji Gongcheng Xuebao/Proceedings of the Chinese Society of Electrical Engineering, 2019, 39(9), 2537. 20 Shi C J, Zou Q Y, He F Q. Journal of the Chinese Ceramic Society, 2010, 38(7), 1179(in Chinese). 史才军, 邹庆焱, 何富强. 硅酸盐学报, 2010, 38(7), 1179. 21 Wu S K, Huang T Y, Xie Y, et al. Bulletin of the Chinese Ceramic Society, 2023, 42(6), 1897(in Chinese). 吴胜坤, 黄天勇, 谢岩, 等. 硅酸盐通报, 2023, 42(6), 1897. 22 Cao W D, Yang Q B. Journal of Civil and Environmental Engineering, 2014, 36(4), 92(in Chinese). 曹伟达, 杨全兵. 土木建筑与环境工程, 2014, 36(4), 92. 23 Song J Y, Li Y, He W, et al. Energy Engineering, 2021(3), 31(in Chinese). 宋佳奕, 李严, 何文, 等. 能源工程, 2021(3), 31. 24 Hu D Q, Luo K, Zhang W, et al. Clean Coal Technology, 2023, 29(4), 148(in Chinese). 胡达清, 罗旷, 张威, 等. 洁净煤技术, 2023, 29(4), 148. 25 Wang X R, Guo J M, Zhang Z K, et al. New Building Materials, 2023, 50(7), 163(in Chinese). 王雪儿, 郭继铭, 张泽凯, 等. 新型建筑材料, 2023, 50(7), 163. 26 Li H H. Fly ash of power plant with flue gas desulfurization gypsum and study on mineralization of CO2 sequestration. Master’s Thesis, China University of Mining and Technology, China, 2019(in Chinese). 李海红. 电厂脱硫石膏协同粉煤灰固化CO2研究. 硕士学位论文, 中国矿业大学, 2019. 27 Bai M J. Effect of carbonated fly ash and carbonation curing on strength and permeability of cement mortar. Master’s Thesis, Harbin Institute of Technology, China, 2022(in Chinese). 白蒙杰. 碳化粉煤灰和碳化养护对水泥砂浆强度与渗透性的影响. 硕士学位论文, 哈尔滨工业大学, 2022. 28 Wang Y, Burris L, Hooton R D, et al. Cement and Concrete Composites, 2022(125), 125. 29 Zhang W, Wei C, Liu X M, et al. Materials, 2022, (19), 6774. 30 Jia G H, Wang Y L, Yang F L, et al. Advances in Materlals Science and Engineering, 2022. 31 Su Q F, Zhou Y M, Chen Y R, et al. Journal of the Chinese Ceramic Society, 2016, 44(5), 663(in Chinese). 苏清发, 周勇敏, 陈永瑞, 等. 硅酸盐学报, 2016, 44(5), 663. 32 Wang Y N, Zhao D Q, Cao L H, et al. Journal of Wuhan University of Technology, 2022, 44(10), 6(in Chinese). 王亚楠, 赵德强, 曹亮宏, 等. 武汉理工大学学报, 2022, 44(10), 6. 33 Zhang G J, Li T. Cement Technology, 2022(4), 87(in Chinese). 张冠军, 李涛. 水泥技术, 2022(4), 87. 34 Xuan M Y, Cho H K, Wang X Y, et al. Journal of Building Engineering, 2023, 70, 106336. 35 Zhang Y P, Cui L P, Liu Y F, et al. Chinese Journal of Environmental Engineering, 2021, 15(7), 2344(in Chinese). 张亚朋, 崔龙鹏, 刘艳芳, 等. 环境工程学报, 2021, 15(7), 2344. 36 Qing Y, Shi C J, Zheng K R, et al. Journal of Building Materials, 2008(1), 116(in Chinese). 庆焱, 史才军, 郑克仁, 等. 建筑材料学报, 2008(1), 116. 37 Shao Y X, Rostami, V, He Z, et al. Journal of Materlals in Civil Engineering, 2014, 26(1), 117. 38 Mo L, Zhang F, Deng M. Cement and Concrete Research, 2016, 88, 217. |
|
|
|