INORGANIC MATERIALS AND CERAMIC MATRIX COMPOSITES |
|
|
|
|
|
Research Progress of Manganese-Cobalt Coating Materials on Metal Interconnects of Solid Oxide Fuel Cells |
HAN Shuaiwen1,2, ZHU Kesheng1, LIU Changyang1,2, LIU Ziliang1,2, BIAN Liuzhen1,2, YANG Lilin1,*
|
1 School of Materials and Metallurgy, Inner Mongolia University of Science and Technology, Baotou 014010, Inner Mongolia, China 2 Inner Mongolia Key Laboratory of Advanced Ceramic Materials and Devices, Baotou 014010, Inner Mongolia, China |
|
|
Abstract As the key component of solid oxide cells (SOCs), the metallic interconnector experiences serious oxidation and high-valence chromium vo-latilization, resulting in the Cr poisoning on the cathode and degradation of cell performance. Manganese cobalt spinel coating on the surfaces of metal interconnectors is an effective strategy to prevent their failure;however, these coatings also have problems, such as relatively low conductivity and poor sintering density. This article reviews the effect of preparation methods and composition design of manganese cobalt coa-tings on the conductivity, thermal expansion coefficient, and oxidation resistance of SOCs metal interconnectors in recent years. The results indicate that the co-doping of rare earth and transition metal elements can synergistically regulate the conductivity and oxidation resistance of manganese cobalt spinel coatings. Finally, we provide future development directions for the design, preparation technology, and performance improvement of manganese cobalt coatings.
|
Published: 25 April 2025
Online: 2025-04-18
|
|
|
|
1 Kong W, Han Z, Lu S, et al. International Journal of Hydrogen Energy, 2020, 45(39), 20329. 2 Bianco M, Caliandro P, Diethelm S, et al. Journal of Power Sources, 2020, 461, 228163. 3 Abdoli H, Molin S, Farnoush H. Materials Aterials Letters, 2020, 259, 126898. 4 Shen F, Reisert M, Wang R, et al. ACS Applied Energy Materials, 2022, 5(8), 9383. 5 Zhu W Z, Deevi S C. Materials Science and Engineering A, 2003, 348(1-2), 227. 6 Li Y, Jiang Y, Wu J, et al. International Journal of Applied Ceramic Technology, 2010, 7(1), 41. 7 Quadakkers W J, Piron-Abellan J, Shemet V, et al. Materials at high temperatures, 2003, 20(2), 115. 8 Acchar W, Sousa C R C, Mello-Castanho S R H. Materials Science and Engineering A, 2012, 550, 76. 9 Wang S, Dong Y, Lin B, et al. Materials Research Bulletin, 2009, 44(11), 2127. 10 Zhu J H, Zhang Y, Basu A, et al. Surface and Coatings Technology, 2004, 177, 65. 11 Yakabe H, Yasuda I. Journal of the Electrochemical Society, 2002, 150(1), A35. 12 Fergus J W. Materials Science and Engineering A, 2005, 397(1-2), 271. 13 Liu Z G, Dong D W, Huang X Q, et al. Electrochemical and Solid-State Letters, 2005, 8(5), A250. 14 Mikkola J, Couturier K, Talic B, et al. Energies, 2022, 15(3), 1168. 15 Jiang Z, Wen K, Liu T, et al. Surface Technology, 2022, 51(4), 14. 16 Han M F, Li Z, Du X J, et al. Rare Metal Materials and Engineering, 2009, 38(S2), 708(in Chinese). 韩敏芳, 李震, 杜晓佳, 等. 稀有金属材料与工程, 2009, 38(S2), 708. 17 Wang Z L, Han M F, Chen X. World Sci-Tech R & D, 2007(1), 30(in Chinese). 王忠利, 韩敏芳, 陈鑫. 世界科技研究与发展, 2007(1), 30. 18 Jiang Z, Wen K, Liu T K, et al. Surface Technology , 2022, 51(4), 14 (in Chinese). 江舟, 文魁, 刘太楷, 等. 表面技术, 2022, 51(4), 14. 19 Shen Z J. Surface modification of SUS430 metal interconnects and their oxidation behavior in cathodic and anodic atmospheres. Master's Thesis, Kunming University of Science and Technology, China, 2020 (in Chinese). 沈正军. SUS430金属连接体表面改性及其阴、阳极气氛氧化行为研究. 硕士学位论文, 昆明理工大学, 2020. 20 Xin X S, Zhu Q S, Liu Yan. Surface Technology, 2019, 48(1), 22(in Chinese). 辛显双, 朱庆山, 刘岩. 表面技术, 2019, 48(1), 22. 21 Cao X W, Zhang Y X, Lin M, et al. Foshan Ceramics, 2019, 29(10), 5(in Chinese). 曹希文, 张雅希, 林梅, 等. 佛山陶瓷, 2019, 29(10), 5. 22 Wu X F, Zhang W Q, Yu B, et al. Rare Metal Materials and Engineering, 2015, 44(6), 1555(in Chinese). 吴小芳, 张文强, 于波, 等. 稀有金属材料与工程, 2015, 44(6), 1555. 23 Zhang W W, Zhan Z L. Thermal Processing, 2013, 42(10), 27(in Chinese). 张卫伟, 詹肇麟. 热加工工艺, 2013, 42(10), 27. 24 Zhu W Z, Deelvi S C. Materials Research Bulletin, 2003, 38(6), 957. 25 Mah J C W, Muchtar A, Somalu M R, et al. International Journal of Hydrogen Energy, 2017, 42(14), 9219. 26 Zhao Q, Geng S, Chen G, et al. Materials Letters, 2022, 306, 130955. 27 Zhang Y, Wang B Y, Zhao L X, et al. Materials Reports, 2014, 28(21), 15(in Chinese). 张勇, 王博煜, 赵丽霞, 等. 材料导报, 2014, 28(21), 15. 28 Hua B. Oxidation, conductivity and surface modification of metallic interconnect materials for solid oxide fuel cells. Ph. D. Thesis, Huazhong University of Science and Technology, China, 2010(in Chinese). 华斌. 固体氧化物燃料电池金属连接体材料的氧化和导电性以及表面改性. 博士学位论文, 华中科技大学, 2010. 29 Hua B, Kong Y H, Lu S F, et al. Chinese Science Bulletin, 2010, 55(11), 1055(in Chinese) . 华斌, 孔永红, 卢凤双, 等. 科学通报, 2010, 55(11), 1055. 30 Yang Z, Xia G, Li X, et al. International Journal of Hydrogen Energy, 2007, 32(16), 3648. 31 Joshi S, Petric A. International Journal of Hydrogen Energy, 2017, 42(8), 5584. 32 Zhang W, Pu J, Chi B, et al. Journal of Power Source, 2011, 196(13), 5591. 33 Pan Y, Geng S, Chen G, et al. Materials Letters, 2021, 297, 129967. 34 Shen Z, Rong J, Yu X. Ceramics International, 2020, 46(5), 5821. 35 Hassan M A, Bin M O. Processes, 2020, 8(9), 1113. 36 Zhang L, Zhu M, Zhang H. Surface Technology, 2017, 46(4), 150. 37 Spotorno R, Piccardo P, Perrozzi F, et al. Fuel Cells, 2015, 15(5), 728. 38 Visvanichkul R, Puengjinda P, Jiwanuruk T, et al. International Journal of Hydrogen Energy, 2021, 46(7), 4903. 39 Li F, Zhang P, Zhao Y, et al. International Journal of Hydrogen Energy, 2023, 48(42), 16048. 40 Zanchi E, Sabato A G, Monterde M C, et al. Materials & Design, 2023, 227, 111768. 41 Smeacetto F, De Miranda A, Cabanas Polo S, et al. Journal of Power Sources, 2015, 280, 379. 42 Jia C, Wang Y, Mol. Journal of Alloys and Compounds, 2019, 787, 1327. 43 Zou Janbo, Wen Kui, Song Chen, et al. Materials Research and Application, 2021, 15(2), 125(in Chinese). 邹建波, 文魁, 宋琛, 等. 材料研究与应用, 2021, 15(2), 125. 44 Wang X, Si X, Gao J, et al. Journal of Cleaner Production, 2023, 389, 136107. 45 Wang X, Si X, Li C, et al. ACS Applied Energy Materials, 2021, 4(7), 7346. 46 Thaheem I, Joh D W, Noh T, et al. Journal of Industrial and Engineering Chemistry, 2021, 96, 315. 47 Saeidpour F, Ebrahimifar H. Corrosion Science, 2021, 182, 109280. 48 Tseng H P, Yung T Y, Liu C K. International Journal of Hydrogen Energy, 2020, 45(22), 12555. 49 Song C, Xie S M, Fan X J, et al. Surface & Coatings Technology, 2020, 402, 126281. 50 Mosavi A, Ebarhimifar H. International Journal of Hydrogen Energy, 2020, 45(4), 3145. 51 Zhu J H, Lewis M J, Du S W, et al. Thin Solid Films, 2015, 596, 179. 52 Jin Y, Hao G, Guo M, et al. Ceramics International, 2022, 48(23), 34931. 53 Gavrilov N V, Ivanov V V, Kamentskikh A S, et al. Surface and Coatings Technology, 2011, 206(6), 1252. 54 Brylewski T, Molin S, Marczynski M, et al. International Journal of Hydrogen Energy, 2021, 46(9), 6775. 55 Demeneva N V, Kononenko O V, Matveev D V, et al. Materials Letters, 2019, 240, 201. 56 Xu Y, Wen Z, Wang S, et al. Solid State Ionics, 2011, 192(1), 561. 57 Mazur L, Molin S, Dabek J, et al. Journal of Thermal Analysis and Calorimetry, 2022, 147, 5649. 58 Montero X, Tietz F, Sebold D, et al. Journal of Power Sources, 2008, 184(1), 172. 59 Naik M, Rajasekaran B. Transactions of the Indian Institute of Metals, 2022, 76(5), 1263. 60 Javed H, Saunders T, Reece M J, et al. Ceramics International, 2021, 47(12), 17804. 61 Mah J C W, Aznam I, Muchtar A, et al. Energies, 2023, 16(3), 1382. 62 Acharya N, Sagar R. Ceramics International, 2023, 49(17), 29164. 63 Ou D R, Cheng M, Wang X L. Journal of Power Sources, 2013, 236, 200. 64 Shao Y, Guo P Y, Sun H, et al. Journal of Alloys and Compounds, 2019, 811, 152006. 65 Taweesup K, Khotsombat S, Chubanjong K, et al. Anti-Corrosion Methods and Materials, 2019, 66(5), 689. 66 Kanyarat W, Limprapard P, Siripongsakul T, et al. Materals Testing, 2017, 59(11-12), 951. 67 Masi A, Bellusci M, Mcphail S J, et al. Journal of the European Ceramic Society, 2017, 37(2), 661. 68 Xiao J, Zhang W, Xiong C, et al. International Journal of Hydrogen Energy, 2015, 40(4), 1868. 69 Masi A, Bellusci M, Mcphail S J, et al. Ceramics International, 2017, 43(2), 2829. 70 Brylewski T, Kruk A, Bobruk M, et al. Journal of Power Sources, 2016, 333, 145. 71 Ma Z B, Wang M H, Zhang Y S, et al. Vacuum, 2022, 204, 111352. 72 Wang B, Li K, Liu J, et al. International Journal of Hydrogen Energy, 2024, 61, 216. 73 Zhao Q, Geng S, Zhang Y, et al. Journal of Alloys and Compounds, 2022, 908, 164608. 74 Qiao W Q, Li Y W, Zhang Y S, et al. Materials Today Communications, 2024, 38, 108061. |
|
|
|