INORGANIC MATERIALS AND CERAMIC MATRIX COMPOSITES |
|
|
|
|
|
Recent Advances in Catalytic Nitrate Reduction for Ammonia Synthesis |
SU Youyi1,, ZHANG Ming2,, TAO Wenyan3, YANG Pingping1,*, GUO Xingchen1, DENG Xu1, XIE Jiale1,*
|
1 School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, China 2 School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, China 3 Tongwei Solar Company, Chengdu 610299, China |
|
|
Abstract Ammonia is a crucial chemical feedstock and energy carrier. However, the conventional Haber-Bosch method for ammonia synthesis requires high temperature and high pressure, leading to significant energy consumption and substantial carbon dioxide emissions. In recent years, the research focus has shifted towards the sustainable synthesis of ammonia using catalytic technologies under ambient conditions, particularly the nitrate reduction to ammonia. This review provides an overview of the reaction pathways and mechanisms involved in catalytic nitrate reduction for ammonia synthesis. Then the recent advances in catalytic nitrate reduction for ammonia synthesis are analyzed in depth from the two aspects of electrocatalysis and photoelectrocatalysis. In the field of electrocatalytic nitrate reduction, the focus is on catalyst modification methods and the reasons for enhanced ammonia production performance during the nitrate reduction processes. Subsequently the strategies for designing photoelectrocatalysts for nitrate reduction for ammonia synthesis are thoroughly analyzed, including element doping, heterojunction construction, and defect engineering, aiming at enhancing catalytic efficiency and selectivity. This review finally summarizes the current challenges in catalytic nitrate reduction for ammonia synthesis, such as improving the reaction kinetics and enhancing catalyst stability, and discusses future prospects for the development of this technology. Catalytic nitrate reduction for ammonia synthesis holds promise for revolutionary changes in ammonia production, reducing reliance on conventional energy-intensive processes and mitigating environmental burdens, thereby contributing to sustainable development efforts.
|
Published: 10 April 2025
Online: 2025-04-10
|
|
|
|
1 Deng Y, Ye X, Du X. Journal of Hydrology, 2023, 624, 129934. 2 Kang J, Jeen S W. Environmental Science and Pollution Research, 2021, 28(27), 35738. 3 Chen J, Gu M, Zhou Y, et al. Chemical Engineering Journal, 2022, 430, 132952. 4 Rezvani F, Sarrafzadeh M H, Ebrahimi S, et al. Environmental Science and Pollution Research, 2019, 26(2), 1124. 5 Yang W, Wang J, Chen R, et al. Journal of Materials Chemistry A, 2022, 10(34), 17357. 6 Zhang X, Wang Y, Liu C, et al. Chemical Engineering Journal, 2021, 403, 126269. 7 Xie J, Wang L, Ren J, et al. Electrochimica Acta, 2022, 421, 140483. 8 Xie J, Wang L, Zhong C, et al. Materials Today Energy, 2023, 31, 101212. 9 Ren J, Yang P, Wang L, et al. Catalysts, 2023, 13(4), 727. 10 MacFarlane D R, Cherepanov P V, Choi J, et al. Joule, 2020, 4(6), 1186. 11 Chang F, Gao W, Guo J, et al. Advanced Materials, 2021, 33(50), 2005721. 12 Liu D, Qiao L, Peng S, et al. Advanced Functional Materials, 2023, 33(43), 2303480. 13 Garcia-Segura S, Lanzarini-Lopes M, Hristovski K, et al. Applied Catalysis B: Environmental, 2018, 236, 546. 14 Wu Y, Ding Y, Chen M, et al. Small, 2024, 20(52), 2408627. 15 Dong Y, Wu K, Yin Y, et al. Chemical Engineering Journal, 2022, 442, 136390. 16 Li H, Li G, Yang Z, et al. Materials Research Bulletin, 2025, 181, 113110. 17 Li S, Liu B, Tian H, et al. Composites Part A:Applied Science and Ma-nufacturing, 2025, 190, 108691. 18 Wang Z, Young S D, Goldsmith B R, et al. Journal of Catalysis, 2021, 395, 143. 19 Liu H, Timoshenko J, Bai L, et al. ACS Catalysis, 2023, 13(2), 1513. 20 Guo H, Li M, Yang Y, et al. Small, 2023, 19(10), 2207743. 21 Wang J, Cai C, Wang Y, et al. ACS Catalysis, 2021, 11(24), 15135. 22 Yang Y, Xu K, Ma X L. Progress in Chemistry, 2023, 35(4), 543 (in Chinese). 杨越, 续可, 马雪璐. 化学进展, 2023, 35(4), 543. 23 Xu X, Hu L, Li Z, et al. Sustainable Energy & Fuels, 2022, 6(18), 4130. 24 Wu X, Liu Z, Gao T, et al. Metals, 2023, 13(4), 799. 25 Deng Z, Ma C, Li Z, et al. ACS Applied Materials & Interfaces, 2022, 14(41), 46595. 26 Wei P, Liang J, Liu Q, et al. Journal of Colloid and Interface Science, 2022, 615, 636. 27 Liu D, Qiao L, Chen Y, et al. Applied Catalysis B:Environmental, 2023, 324, 122293. 28 Fan X, Liu C, Li Z, et al. Small, 2023, 19(42), 2303424. 29 Qiao L, Liu D, Zhu A, et al. Applied Catalysis B:Environmental, 2024, 340, 123219. 30 Pu Z, Liu T, Amiinu I S, et al. Advanced Functional Materials, 2020, 30(45), 2004009. 31 Ye S, Chen Z, Zhang G, et al. Energy & Environmental Science, 2022, 15(2), 760. 32 Jia Y, Ji Y G, Xue Q, et al. ACS Applied Materials & Interfaces, 2021, 13(38), 45521. 33 Hong Q L, Zhou J, Zhai Q G, et al. Chemical Communications, 2021, 57(88), 11621. 34 Yao Q, Chen J, Xiao S, et al. ACS Applied Materials & Interfaces, 2021, 13(26), 30458. 35 Chouki T, Machreki M, Rutkowska I A, et al. Journal of Environmental Chemical Engineering, 2023, 11(2), 109275. 36 Zhang N, Zhang G, Tian Y, et al. Dalton Transactions, 2023, 52(14), 4290. 37 Luo Y, Chen K, Wang G, et al. Inorganic Chemistry Frontiers, 2023, 10(5), 1543. 38 Liu X, Xu X, Li F, et al. ACS Applied Materials & Interfaces, 2022, 14(34), 38835. 39 Wang J, Sun Z, Li Y, et al. Journal of Alloys and Compounds, 2023, 955, 170199. 40 Pan F, Zhou J, Wang T, et al. Journal of Colloid and Interface Science, 2023, 638, 26. 41 Zhang S, Li M, Li J, et al. Proceedings of the National Academy of Sciences, 2022, 119(6), e2115504119. 42 Li G, Xue S, Zhu H, et al. Ionics, 2023, 29(6), 2515. 43 Wang J, Wang Y, Cai C, et al. Nano Letters, 2023, 23(5), 1897. 44 Wang J, Zhang S, Wang C, et al. Inorganic Chemistry Frontiers, 2022, 9(10), 2374. 45 Li J, Zhao D, Zhang L, et al. Journal of Colloid and Interface Science, 2023, 629, 805. 46 Zhao F, Hai G, Li X, et al. Chemical Engineering Journal, 2023, 461, 141960. 47 Xie L, Hu L, Liu Q, et al. Inorganic Chemistry Frontiers, 2023, 9(14), 3392. 48 Li Z, Liang J, Liu Q, et al. Materials Today Physics, 2022, 23, 100619. 49 Liu Q, Xie L, Liang J, et al. Small, 2022, 18(13), 2106961. 50 Wang G, Zhang Y, Chen K, et al. InorganicChemistry, 2023, 62(17), 6570. 51 Lv Y, Su J, Gu Y, et al. JACS Au, 2022, 2(12), 2765. 52 Qin J, Wu K, Chen L, et al. Journal of Materials Chemistry A, 2022, 10(8), 3963. 53 Zhang S, Chen D, Guo Y, et al. Materials Today, 2023, 66, 17. 54 Lin C, Chen X, Wang L, et al. Advanced Functional Materials, 2024, 34(36), 2401287. 55 Sun W, Ji H, Li L, et al. Angewandte Chemie International Edition, 2021, 60(42), 22933. 56 Chen F Y, Wu Z Y, Gupta S, et al. Nature Nanotechnology, 2022, 17(7), 759. 57 Fujihira M, Satoh Y, Osa T. Nature, 1981, 293(5829), 206. 58 Shen R, Ren D, Ding Y, et al. Science China Materials, 2020, 63(11), 2153. 59 Matamala-Troncoso F, Sáez-Navarrete C, Mejía-López J, et al. Surfaces and Interfaces, 2023, 37, 102751. 60 Wang F, Ding Q, Bai Y, et al. Inorganic Chemistry Frontiers, 2022, 9(4), 805. 61 Bai H, Wang F, Ding Q, et al. Inorganic Chemistry, 2023, 62(5), 2394. 62 Guo Y, Zhang R, Zhang S, et al. Energy & Environmental Science, 2021, 14(7), 3938. 63 Doudrick K, Yang T, Hristovski K, et al. Applied Catalysis B: Environmental, 2013, 136-137, 40. 64 Yamauchi M, Abe R, Tsukuda T, et al. Journal of the American Chemical Society, 2011, 133(5), 1150. 65 Walls J M, Sagu J S, Upul Wijayantha K G. RSC Advances, 2019, 9(11), 6387. 66 Liu L, Bai Y, Huang Z, et al. Inorganic Chemistry Frontiers, 2023, 10(7), 2060. 67 Bai Y, Gao S, Xie W, et al. International Journal of Hydrogen Energy, 2023, 48(29), 10882. 68 Hirakawa H, Hashimoto M, Shiraishi Y, et al. ACS Catalysis, 2017, 7(5), 3713. 69 Zhou S, Sun K, Toe C Y, et al. Advanced Materials, 2022, 34(29), 2201670. 70 Li X, Fan W, Bai Y, et al. Chemical Engineering Journal, 2021, 433, 133225. 71 Choi H, Peters A W, Noh H, et al. ACS Applied Energy Materials, 2019, 2(12), 8695. 72 Silveira V R, Bericat-Vadell R, Sá J. The Journal of Physical Chemistry C, 2023, 127(11), 5425. 73 Sheydaei M, Ayoubi-Feiz B. Journal of Water Process Engineering, 2021, 39, 101856. 74 Li C, Li K, Chen C, et al. Separation and Purification Technology, 2020, 237, 116485. 75 Gao W, Gao L, Li D, et al. Journal of Electroanalytical Chemistry, 2018, 817, 202. 76 Muñoz E, Schrebler R, Henríquez R, et al. Thin Solid Films, 2009, 518(1), 138. 77 Li J, Zhang Y, Liu C, et al. Advanced Functional Materials, 2022, 32(18), 2108316. 78 Li J, Chen R, Wang J, et al. Nature Communications, 2022, 13(1), 1098. |
[1] |
TANG Xiaolong, WEN Jiajun, LIU Yuanyuan, WANG Chengzhi, LUO Ning, DUAN Erhong, ZHOU Yuansong, YI Honghong, GAO Fengyu. Catalytic Performance of CoMn2O4/Ce-TiO2 Bifunctional Catalyst for the Simultaneous Removal of NOx and CO[J]. Materials Reports, 2025, 39(5): 24020126-7. |
|
|
|
|