INORGANIC MATERIALS AND CERAMIC MATRIX COMPOSITES |
|
|
|
|
|
Research Progress of Two-dimensional Carbon-based Material in Lithium-Sulfur Battery |
XU Wanlin1,2,, FENG Tengrui1,2,, WU Qi1,2,*, XIA Jiezhen1,2, CAO Rong1,2
|
1 School of Science, Xizang University, Lhasa 850000, China 2 Institute of Oxygen Supply, Center of Tibetan Studies (Everest Research Institute), Xizang University, Lhasa 850000, China |
|
|
Abstract Lithium-sulfur batteries (Li-S batteries) are regarded as one of the most promising modern energy storage systems due to their high theoretical energy density and specific capacity. However, their commercial application still faces huge challenges, such as fast capacity decay, poor cycle stability and short lifetime, originating from the shuttle effect, high electrochemical energy barrier, low conductivity of sulfur species, and volume change of sulfur cathode. Optimizing functional separators and designing appropriate positive electrode materials for batteries is a feasible approach. Two-dimensional (2D) carbon-based materials are now widely used in Li-S batteries as sulfur host materials, since they are highly controllable and have a wide range of physical, chemical, and electrochemical characteristics. This paper reviews the research progress of 2D carbon-based materials in Li-S batteries, including graphene, 2D defective carbon-based materials, non-metallic doped carbon-based materials, metal-doped carbon-based materials, non-metallic carbides and metal carbides, and their corresponding catalytic performance. Finally, we highlight a few issues that still require addressing and forecast the future development in the application of Li-S batteries.
|
Published: 10 April 2025
Online: 2025-04-10
|
|
|
|
1 Deng R, Wang M, Yu H, et al. Energy & Environmental Materials, 2022, 5(3), 777. 2 Li Y, Guo S. Matter, 2021, 4(4), 1142. 3 Angulakshmi N, Dhanalakshmi R B, Sathya S, et al. Batteries & Supercaps, 2021, 4(7), 1064. 4 Liang Z, Shen J, Xu X, et al. Advanced Materials, 2022, 34(30), 2200102. 5 Gu X, Zhang S, Hou Y. Chinese Journal of Chemistry, 2016, 34(1), 13. 6 Li Z, Sun H, Pang Y, et al. Materials, 2021, 14(4), 861. 7 Xie S, Chen X, Wang C, et al. Small, 2022, 18(18), 2200395. 8 Luo S, Yao M, Lei S, et al. Nanoscale, 2017, 9(14), 4646. 9 Shao Q, Wu Z S, Chen J. Energy Storage Materials, 2019, 22, 284. 10 Deng N, Feng Y, Wang G, et al. Chemical Engineering Journal, 2020, 401, 125976. 11 Tang J, Zhao Q, Li F, et al. Nanoscale, 2021, 13(45), 18883. 12 Li F, Anjarsari Y, Wang J, et al. Carbon Letters, 2023, 33(5), 1321. 13 Wang J, Ma F, Sun M. RSC Advances, 2017, 7(27), 16801. 14 Wang X, Wang Z, Chen L. Journal of Power Sources, 2013, 242, 65. 15 Wang H, Yang Y, Liang Y, et al. Nano Letters, 2011, 11(7), 2644. 16 Baumann A E, Downing J R, Burns D A, et al. ACS Applied Materials & Interfaces, 2020, 12(33), 37173. 17 Li R, Zhang M, Fu X, et al. ACS Applied Electronic Materials, 2022, 4(7), 3263. 18 Guan W, Wang T, Liu Y, et al. Advanced Energy Materials, 2023, 13(45), 2302565. 19 Yi Z, Su F, Huo L, et al. Applied Surface Science, 2020, 503, 144446. 20 Tong Z, Huang L, Liu H, et al. Advanced Functional Materials, 2021, 31(11), 2010455. 21 Zhang W, Li Y, Lv H, et al. Small Structures, 2023, 4(3), 2200244. 22 Xiong D G, Zhang Z, Huang X Y, et al. Journal of Energy Chemistry, 2020, 51, 90. 23 Pourali Z, Yaftian M R, Sovizi M R. Materials Chemistry and Physics, 2018, 217, 117. 24 Xia J, Cao R, Zhao L, et al. Journal of Colloid and Interface Science, 2023, 630, 317. 25 Liang Z, Yang D, Tang P, et al. Advanced Energy Materials, 2021, 11(5), 2003507. 26 Park J S, Park D Y, Yang S M, et al. Carbon, 2022, 196, 304. 27 Sun W, Song Z, Feng Z, et al. Nano-Micro Letters, 2022, 14(1), 222. 28 Dong Y, Xu B, Hu H, et al. Physical Chemistry Chemical Physics, 2021, 23(23), 12958. 29 Amaral M M, Mujib S B, Santos E A, et al. Journal of Energy Storage, 2023, 72, 108388. 30 Wu J, Ye T, Wang Y, et al. ACS Nano, 2022, 16(10), 15734. 31 Zhou F, Li Z, Luo X, et al. Nano Letters, 2018, 18(2), 1035. 32 Al Salem H, Chitturi V R, Babu G, et al. RSC Advances, 2016, 6(111), 110301. 33 Zhou F, Song L T, Lu L L, et al. ChemNanoMat, 2016, 2(10), 937. 34 Wang J, Wang L, Li Z, et al. Journal of Electronic Materials, 2023, 52(6), 3526. 35 Abbas S A, Ding J, Wu S H, et al. ACS Nano, 2017, 11(12), 12436. 36 Fang D, Wang Y, Liu X, et al. ACS Nano, 2019, 13(2), 1563. 37 Fang M, Chen Z, Liu Y, et al. Journal of Materials Chemistry A, 2018, 6(4), 1630. 38 Lei T, Chen W, Lv W, et al. Joule, 2018, 2(10), 2091. 39 Pei F, Lin L, Fu A, et al. Joule, 2018, 2(2), 323. 40 Chen W, Lei T, Lv W, et al. Advanced Materials, 2018, 30(40), 1804084. 41 Feng G, Liu X, Wu Z, et al. Journal of Alloys and Compounds, 2020, 817, 152723. 42 García-Soriano F J, Para M L, Luque G L, et al. Journal of Solid State Electrochemistry, 2020, 24, 2341. 43 Huang J Q, Xu Z L, Abouali S, et al. Carbon, 2016, 99, 624. 44 Fan Y, Yang Z, Hua W, et al. Advanced Energy Materials, 2017, 7(13), 1602380. 45 Zhang Y, Ma L, Tang R, et al. Applied Surface Science, 2022, 585, 152498. |
|
|
|