NEW BIOMEDICAL MATERIALS |
|
|
|
|
|
A Review on Preparation Process and Properties of Titanium Alloy-Hydroxyapatite Composite Materials for Bone Repair |
JIANG Wenping1,3, PANG Xingzhi 2,3, HE Juanxia2,3, YANG Wenchao2,3,*, ZHAN Yongzhong1,2,3,*
|
1 School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China 2 School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China 3 State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Nanning 530004, China |
|
|
Abstract Titanium alloy-hydroxyapatite composite materials for bone repair have attracted much attention due to their excellent biocompatibility and mechanical properties. The metal part of the material constitutes a matrix skeleton with good mechanical properties, while the non-metallic part composed of calcium phosphate compounds can effectively promote bone cell growth and ensure good biocompatibility of the material. There are two main preparation processes for this type of material: high-temperature sintering and friction stir welding. High temperature sintering mainly includes hot pressing sintering, pressureless heat transfer sintering, discharge plasma sintering, microwave sintering, and laser sintering. At pre-sent, there are problems with insufficient mechanical properties during low-temperature sintering and severe thermal decomposition of calcium phosphate compounds during high-temperature sintering in the high-temperature sintering process, while the preparation process of friction stir welding is yet inchoate. This review summarizes the working principle and characteristics of the aforementioned preparation process of titanium alloy hydroxyapatite composite materials for bone repair. It analyzes and discusses the influence of each preparation process on the products’ phase composition, microstructure, mechanical properties, and biocompatibility. It elaborates the viewpoint that high-temperature sintering mechanism, the pressure condition (pressurized or pressureless) of the sintering process, and other process factors affect greatly the material properties, and depicts the promising potential of the two preparation processes, i. e., friction stir welding and microwave sintering, owing to relatively small impact on calcium phosphate compounds. It also clarifies the advantages/disadvantages and development prospect of the preparation processes entailed, and finally ends with a tentative prophecy about the three research directions in the preparation process of titanium alloy hydroxyapatite composite materials for bone repair.
|
Published: 10 March 2025
Online: 2025-03-18
|
|
|
|
1 He Y H. Fabrication and properties of hydroxyapatite/Ti-13Nb-13Zr composites for biomedical application. Ph. D. Thesis, Kunming University of Science and Technology, China, 2018 (in Chinese). 何远怀. 羟基磷灰石/Ti-13Nb-13Zr生物材料的制备和性能研究. 博士学位论文, 昆明理工大学, 2018. 2 Walaa A E, Moustafa A D, Atef H, et al. Materials & Design, 2024, 241, 112850. 3 Wapner K L. Clinical Orthopaedics and Related Research, 1991, 271, 12. 4 Nag S, Banerjee R, Fraser H L. Materials Science and Engineering C, 2005, 25(3), 357. 5 Katz J L. Nature, 1980, 283(5742), 106. 6 Amir A, Abu B S, Norhamidi M, et al. Materials & Design, 2014, 55, 165. 7 Wang H L, Shah S A A, Hao Y L, et al. Journal of Alloys and Compounds, 2017, 700, 155. 8 Shao L, Gu Z, Zhou X Z, et al. Bulletin of Science and Technology, 2014, 30(3), 122 (in Chinese). 邵林, 顾政, 周欣竹, 等. 科技通报, 2014, 30(3), 122. 9 Gu Z, Zheng J J, Zhou X Z. The World of Building Materials, 2013, 34(2), 5 (in Chinese). 顾政, 郑建军, 周欣竹. 建材世界, 2013, 34(2), 5. 10 Marco V, Roberto M, Marek B, et al. Journal of Biomechanics, 2000, 33(12), 1611. 11 Zhou K X, Wang M F, Zhang S, et al. Journal of Materials Research and Technology, 2024, 30, 8260. 12 Li C L, Zhan Y Z, Jiang W P. Materials & Design, 2011, 32(8), 4598. 13 Zheng Y F, Li L. Biomedical materials science, Northwestern Polytechnical University Press, China, 2009, pp. 351 (in Chinese). 郑玉峰, 李莉. 生物医用材料学, 西北工业大学出版社, 2009, pp. 351. 14 Wei D Q, Zhou Y, Jia D C, et al. Applied Surface Science, 2008, 254(6), 1775. 15 Jin Y R, Jia Q M, Shan S Y. Materials Reports, 2019, 33(23), 4008 (in Chinese). 晋艳茹, 贾庆明, 陕绍云. 材料导报, 2019, 33(23), 4008. 16 Gautier S, Champion E, Bernache-Assollant D, et al. Journal of the European Ceramic Society, 1999, 19(4), 469. 17 Mangal R, Vamsi K B, Amit B, et al. Acta Biomaterialia, 2011, 7(2), 866. 18 Limin S, Christopher C B, Clare P G. Materials Science and Engineering A, 2003, 360(1-2), 70. 19 Jansen J A, van de Waerden J P, Wolke J G, et al. Journal of Biomedical Materials Research, 1991, 25(8), 973. 20 Ning C Q, Ning Y, Wang H L, et al. Journal of Materials Science Letters, 2000, 19(14), 1243 21 Wang X P, Chen Y Y, Xu L J, et al. Journal of the Mechanical Behavior of Biomedical Materials, 2011, 4(8), 2074. 22 Xie F X, Sun Q C, Mu Y M, et al. Journal of the Mechanical Behavior of Biomedical Materials, 2024, 152, 106466. 23 Prakash C, Singh S, Ramakrishna S, et al. Journal of Alloys and Compounds, 2020, 824, 153774. 24 Zuo S Y, Peng Q, Zhang T, et al. Ceramics International, 2024, 50(11, Part A), 18105. 25 Shekhar N, Rajesh T, Bikramjit B. Materials Science and Engineering C, 2009, 29(1), 97. 26 Rakesh K, Anupam A. Journal of the Mechanical Behavior of Biomedical Materials, 2023, 142, 105852. 27 Amir A, Abu B S, Norhamidi M, et al. Materials & Design, 2015, 65, 1028. 28 Zhang J, Jiang Z G, Guo H, et al. Vacuum, 2021, 184, 109863. 29 Gurpreet S, Neeraj S, Deepak K, et al. Materials Chemistry and Physics, 2020, 243, 122662. 30 Muhammad R R, Abu B S, Norhamidi M, et al. Materials & Design, 2015, 87, 386. 31 Ning C, Zhou Y. Acta Biomaterialia, 2008, 4(6), 1944. 32 Apurbba K S, Shivani G. JOM, 2020, 72(3), 1211. 33 Cai Z W, Wang X Y, Zhang Z R, et al. RSC Advances, 2019, 9(24), 13623. 34 Mushtaq F, Mat R, Ani F N. Renewable and Sustainable Energy Reviews, 2014, 39, 555. 35 Lin W, Bai X D, Ma W J, et al. Tsinghua Science and Technology, 2002(5), 696 (in Chinese). 林伟, 白新德, 马文军, 等. 清华大学学报(自然科学版), 2002(5), 696. 36 Zhou S Z, Wu X B, Gao L Y, et al. Cemented Carbide, 2012, 29(3), 174 (in Chinese). 周书助, 伍小波, 高凌燕, 等. 硬质合金, 2012, 29(3), 174. 37 Zuo S Y, Peng Q, Luo T, et al. Biomaterials Science, 2024, 12(1), 92. 38 Pan Z M. Journal of Shenzhen University, 2002(2), 81 (in Chinese). 潘志铭. 深圳大学学报, 2002(2), 81. 39 Man T C, Chak Y T, Ling C, et al. Composites Part B:Engineering, 2015, 83, 50. 40 Yang Y Q, Wu S B, Zhang Y, et al. Chinese Journal of Lasers, 2020, 47(5), 203 (in Chinese). 杨永强, 吴世彪, 张越, 等. 中国激光, 2020, 47(5), 203. 41 Shahid M, Ismail L. In: 18th International Conference on Machine Design and Production, EskiSehiR, Turkey, 2018, pp. 285. 42 Yuwei Z, Haize G, Diana A L. Procedia Engineering, 2015, 114, 658. 43 Zhao X H, Zuo Z B, Han Z Y, et al. Materials Reports, 2016, 30(23), 120 (in Chinese). 赵霄昊, 左振博, 韩志宇, 等. 材料导报, 2016, 30(23), 120. 44 Attar H, Calin M, Zhang L C, et al. Materials Science and Engineering A, 2014, 593, 170. 45 Dirk H, Vanessa S, Eric W, et al. Acta Materialia, 2016, 117, 371. 46 Niloofar S, Ali F. Progress in Materials Science, 2021, 117, 100724. 47 Xie W J, He J, Zhu S, et al. Journal of Materials Research, 2011, 26, 1791. 48 Yamazaki K, Risbud S H, Aoyama H, et al. Journal of Materials Processing Technology, 1996, 56(1), 955. 49 Suárez M, Fernández A, Menéndez J L, et al. In: Burcu E (Ed. ), Sintering Applications. IntechOpen, Rijeka, 2013, Ch. 13, pp. 319. 50 Anselmi-Tamburini U, Gennari S, Garay J E, et al. Materials Science and Engineering A, 2005, 394(1), 139. 51 Li K, Liu X, Zhao Y. Coatings, 2019, 9(2), 129. 52 Rahmati R, Khodabakhshi F. Journal of the Mechanical Behavior of Biomedical Materials, 2018, 88, 127. 53 Amirhosein S, Mehrdad A, Hamed S. Materials Today Communications, 2023, 37, 107305. 54 Axaule M, Aidar K, Aleksander P, et al. Coatings, 2024, 14(3), 333. 55 Rana A A. Journal of Bio- and Tribo-Corrosion, 2016, 2(2), 5. 56 Davoud B, Mardali Y, Sousan R. Materials & Design, 2015, 65, 447. 57 Andre M, Merve N D, Rajani K V, et al. Materials Today Communications, 2022, 33, 104693. 58 Man T C, Chak Y T, Ling C, et al. Materials Science and Engineering C, 2014, 42, 746. 59 Lin Y J, Mohamed B, Zeng W Y, et al. Journal of Materials Engineering and Performance, 2024, 33, 9664. 60 Wang C C, Wang Y P, Bao Z L, et al. Ceramics International, 2022, 48, 28678. 61 Han C J, Li Y, Wang Q, et al. Materials & Design, 2018, 141, 256. 62 Guo Y, Tan Y N, Liu Y, et al. Materials Science and Engineering C, 2017, 80, 197. 63 Rastgoo M J, Razavi M, Salahi E, et al. Journal of the Australian Ceramic Society, 2017, 53(2), 449. 64 He Y H, Zhang Y Q, Jiang Y H, et al. Vacuum, 2016, 131, 176. 65 Chu C, Lin P, Dong Y, et al. Journal of Materials Science: Materials in Medicine, 2002, 13(10), 985. 66 Yun Y Z, Kyo H K, Agrawal C M, et al. Biomaterials, 2004, 25(15), 2927. 67 Pedro B, Enori G, Gabriel B, et al. Materials Research, 2011, 14(3), 384. 68 Wei Q S, Li S, Han C J, et al. Journal of Laser Applications, 2015, 222, 444. 69 Zhang X, Yocom C J, Mao B, et al. Journal of Laser Applications, 2019, 31(3), 1201. 70 Zhou J, Wang Y R, Zhi G, et al. Metals and Materials International, 2024, 30(1), 240. 71 Mostafa M E, Shash A Y, Abd-Rabou M, et al. Journal of Advanced Joining Processes, 2021, 3, 100059. 72 Khodabakhshi F, Rahmati R, Nosko M, et al. Surface and Coatings Technology, 2019, 374, 460. 73 Hench L L. Journal of American Ceramic Society, 1998, 81(7), 1705. 74 Xie F X, Huang J B, Cao S, et al. Materials Reports, 2023, 37(13), 20170222 (in Chinese). 颉芳霞, 黄家兵, 曹澍, 等. 材料导报, 2023, 37(13), 20170222. |
|
|
|