INORGANIC MATERIALS AND CERAMIC MATRIX COMPOSITES |
|
|
|
|
|
Review and Prospect of the Target Relationship Between Chemical Components and Macroscopic Properties of Asphalt |
ZHANG Hongfei1,2, ZHANG Jiupeng1,2, WANG Shuai3, CHEN Zixuan1,2,*, LI Zhe1, PEI Jianzhong1,2
|
1 School of Highway, Chang’an University, Xi’an 710064, China 2 Key Laboratory for Special Area Highway Engineering of Ministry of Education, Chang’an University, Xi’an 710064, China 3 Shaanxi Transportation Planning Design and Research Institute Co., Ltd., Xi’an 710065, China |
|
|
Abstract The complex chemical composition characteristics of asphalt are closely related to its pavement performance and will change with the service time of asphalt, resulting in a high degree of uncertainty in its performance. It is significant for the research and development of high-perfor-mance asphalt pavement materials to take the asphalt chemical components as a bridge to establish a targeting relationship between microscopic composition and macroscopic properties. This paper aims to systematically introduce and outlook the relationship between asphalt component characteristics and macroscopic properties, focusing on its guiding role in the optimal design of asphalt pavement materials. First, the research process and development trend of colloid structure theory, asphaltene structure modeling and molecular structure modeling of chemical components are reviewed from the micro-perspective. Second, the basic characteristics of saturate, aromatic, resin and asphaltene fractions and the commonly used separation methods are summarized. Then, the targeting relationships between the macroscopic properties of asphalt, including engineering index, multi-temperature domain rheological properties, thermal stability, aging properties, regeneration properties and the chemical component characteristics of asphalt are reviewed. The migration characteristics of the chemical components in the process of asphalt property transformation are analyzed and the mechanism of the chemical fractions on the evolution of macroscopic properties is revealed. This will provide some reference for the construction of targeted asphalt design, targeted flame-retardant and targeted regeneration systems. Finally, the design method of targeted chemical compositions of asphalt is proposed with the aid of molecular dynamics simulations of asphalt. The application conception for the relationship between chemical component characteristics and macroscopic properties of asphalt is proposed based on material genomic ideas.
|
Published: 25 February 2025
Online: 2025-02-18
|
|
|
|
1 Yang D, Yang C, Xie J, et al. Construction and Building Materials, 2020, 244, 118401. 2 Dai Z. Nano-structure and components of the recovered asphalt binders from weathered asphalt mixtures. Master’s Thesis, Suzhou University of Science and Technology, China, 2017 (in Chinese). 代震. 全气候老化沥青的组分和AFM微观结构研究. 硕士学位论文, 苏州科技大学, 2017. 3 Yang X Y, He L N, An M, et al. Petrochemical Technology, 2018, 47(2), 186 (in Chinese). 杨晓彦, 赫丽娜, 安谧, 等. 石油化工, 2018, 47(2), 186. 4 Zhao P H, Fan W Y, Zhang L B, et al. Journal of Dispersion Science and Technology, 2015, 36(5), 634. 5 Pereira J S F, Moraes D P, Antes F G, et al. Microchemical Journal, 2010, 96(1), 4. 6 Wiehe I A, Liang K S. Fluid Phase Equilibria, 1996, 117(1-2), 201. 7 Fu Z, Yan X L, Cai T, et al. Journal of Wuhan University of Technology, 2014, 36, 1. 8 Hofko B, Eberhardsteiner L, Füssl J, et al. Materials and Structures, 2015, 49(3), 829. 9 Mirwald J, Werkovits S, Camargo I, et al. Construction and Building Materials, 2020, 250, 118809. 10 He M S. Structure behaviors and properties characterization for paving asphalt. Master’s Thesis, Chang’an University, China, 2013 (in Chinese). 贺孟霜. 道路石油沥青结构行为与性能表征. 硕士学位论文, 长安大学, 2013. 11 Kang J Q. Study on the relationship between asphalt chemical structure and the macroscopic properties. Master’s Thesis, China University of Petroleum (EastChina), China, 2015 (in Chinese). 康剑翘. 沥青化学组成结构与宏观性质关联关系研究. 硕士学位论文, 中国石油大学(华东), 2015. 12 Gao G M, Guo N, Qian B. Journal of Chongqing Jiaotong University (Natural Science), 2020, 39(4), 69 (in Chinese). 高桂海, 郭宁, 钱波. 重庆交通大学学报(自然科学版), 2020, 39(4), 69. 13 Richardson C. The Modern Asphalt Pavement, John Wiley & Sons, USA, 1907. 14 Robertson R E. Chemical Properties of asphalts and their relationship to pavement performance, Strategic Highway Research Program, Washington DC, 1991. 15 Jing Y P. Journal of Chang’an University (Natural Science Edition), 2005(3), 33 (in Chinese). 景彦平. 长安大学学报(自然科学版), 2005(3), 33. 16 Corbett L W. Analytical Chemistry, 1969, 41(4), 576. 17 Luo H Y, Huang X M. China Journal of Highway and Transport, 2021, 34(10), 98 (in Chinese). 罗浩原, 黄晓明. 中国公路学报, 2021, 34(10), 98. 18 Ma X Y, Ma X J, Wang Z J, et al. Construction and Building Materials, 2023, 394, 132163. 19 Weigel S, Stephan D. Road Materials and Pavement Design, 2017, 19(7), 1636. 20 Planche J-P. In: 12th ISAP International Conference on Asphalt Pavements. Raleigh, 2014. p. 13. 21 Hu Y P, Si W, Kang X X, et al. Fuel, 2022, 326, 125045. 22 Yuan Y, Zhu X Y, Lee K Y, et al. Construction and Building Materials, 2020, 237, 117562. 23 Hao J H, Zong P J, Tian Y Y, et al. Energy Conversion and Management, 2019, 183, 485. 24 Fischer H R, Cernescu A. Fuel, 2015, 153, 628. 25 Zhang Q, Deng W A, Li C, et al. Petroleum Processing and Petrochemicals, 2014, 45(6), 20. 26 Mousavi M, Abdollahi T, Pahlavan F, et al. Fuel, 2016, 183, 262. 27 Wang J Y, Wang T, Hou X D, et al. Fuel, 2019, 238, 320. 28 Rosinger A. Colloid and Polymer Science, 1914, 15(5), 177. 29 FJ N. Bereiding on constitutie van asphalt. Ph. D. Thesis, Delft University, Netherland, 1923. 30 Mack C. The Journal of Physical Chemistry, 1932, 36(12), 2901. 31 Pfeiffer J P, Saal R N J. The Journal of Physical Chemistry, 1940, 44(2), 139. 32 Zhang M Y, Hao P W, Dong S, et al. Measurement, 2020, 151, 107255. 33 Gaestel C, Smadja R, Lamminan K. Rev Gentile Routes et Aérodromes, 1971, 466, 85. 34 Siddiqui M N, Ali M F. Fuel, 1999, 78(9), 1005. 35 Behnood A, Modiri G M. European Polymer Journal, 2019. 112, 766. 36 Xin J N, Li M, Li R, et al. Acs Sustainable Chemistry & Engineering, 2016, 4(5), 2754. 37 Liu P, Zhang D X, Wang L L, et al. Applied Energy, 2016, 163, 254. 38 Sadeghtabaghi Z, Rabbani A R, Hemmati-Sarapardeh A. Journal of Molecular Structure, 2021, 1238, 95. 39 Shi H Q, Xu T, Zhou P, et al. Construction and Building Materials, 2017, 136, 515. 40 Yen T F, Young D K. Carbon, 1973, 11(1), 33. 41 Mullins OC. Energy & Fuels, 2010, 24(4), 2179. 42 Hofko B, Eberhardsteiner L, Fuessl J, et al. Materials and Structures, 2016, 49(3), 829. 43 Jin D Z. Study on characteristics of asphalt performance under different ultraviolet radiation conditions. Master’s Thesis, Changsha University of Science and Technology, China, 2018 (in Chinese). 金大中. 不同紫外光照工况条件下沥青性能变化特征研究. 硕士学位论文, 长沙理工大学, 2018. 44 Wang Y J, Wang W T, Wang L B. Construction and Building Materials, 2022, 329, 127161. 45 Sun G Q, Niu Z X, Zhang J P, et al. Case Studies in Construction Materials, 2022, 17, e01581. 46 Loeber L, Sutton O, Morel J, et al. Journal of microscopy, 1996, 182(1), 32. 47 Pipintakos G, Hasheminejad N, Lommaert C, et al. Micron, 2021, 147, 103083. 48 Hasheminejad N, Pipintakos G, Vuye C, et al. Construction and Building Materials, 2021, 313, 125481. 49 Chen Z X, Pei J Z, Li R, et al. Construction and Building Materials, 2018, 189, 695. 50 Li D D, Greenfield M L. Fuel, 2014, 115(1), 347. 51 Guo F C, Pei J Z, Huang G J, et al. Construction and Building Materials, 2023, 371, 130781. 52 Fallah F, Khabaz F, Kim Y R, et al. Fuel, 2019, 237, 71. 53 Hu D L, Gu X Y, Lyu L, et al. Construction and Building Materials, 2022, 318, 126032. 54 Guo F C, Zhang J P, Pei J Z, et al. Journal of Molecular Modeling, 2019, 25, 12. 55 Liu Q, Fang R Y, Wu J T, et al. Construction and Building Materials, 2023, 392, 13209. 56 Zhao K C, Wang Y H, Yang Z. Journal of Highway and Transportation Research and Development, 2021, 38(5), 10 (in Chinese). 赵可成, 王予红, 杨震. 公路交通科技, 2021, 38(5), 10. 57 Li Z. Study on the colloidal chemical characteristics of bottom oil recycling on catalytic thermal-cracking of residue under hydrogen atmosphere. Master’s Thesis, China University of Petroleum (East China), China, 2018 (in Chinese). 李正. 渣油临氢催化热裂化尾油循环体系胶体化学特性研究. 硕士学位论文, 中国石油大学(华东), 2018. 58 Branthaver J F, Petersen J C, Robertson R E, et al. Chromatography, 1993. 59 Altgelt K H. Journal of Applied Polymer Science, 2010, 9(10), 3389. 60 Tian R Y, Luo H Y, Huang X M, et al. Materials (Basel), 2022, 15(5), 1889. 61 O’Donnell G, Snider L T, Rietz E G. Analytical Chemistry, 1951, 23(6), 894. 62 Research Institute of Highway Ministry of Transport. Standard test methods of bitumen and bituminous mixtures for highway engineering: JTG E20-2011, China Communication Press, China, 2011 (in Chinese). 交通运输部公路科学研究院. 公路工程沥青及沥青混合料试验规程: JTG E20-2011, 人民交通出版社, 2011. 63 Wang T, Wang J Y, Hou X D, et al. Road Materials and Pavement Design, 2019, 22(3), 539. 64 ASTM D 4124. Standard test method for separation of asphalt into four fractions, ASTM International, USA, 2009, pp.6. 65 ASTM D 3279. Standard test method for n-heptane insoluble, ASTM International, USA, 2012, pp.112. 66 ASTM D 6560. Standard test method for determination of asphaltenes (heptane insolubles) in crude petroleum and petroleum products, ASTM International, USA, 2012, pp.63. 67 ASTM D. Standard test method for characteristic groups in rubber extender and processing oils and other petroleum-derived oils by the clay-gel absorption chromatographic method, ASTM International, USA, 2007, pp.56. 68 Wang S S, Zheng H Y, Zhu J G, et al. China Journal of Highway and Transport, 2022, 35(10), 114 (in Chinese). 王珊珊, 郑华宇, 朱建国, 等. 中国公路学报, 2022, 35(10), 114. 69 Liu X, Wu S P, Liu G, et al. Materials, 2015, 8(8), 5238. 70 Yang C, Xie J, Wu S P, et al. Construction and Building Materials, 2020, 235, 117437. 71 Cong P L, Luo W H, Xu P J, et al. Construction and Building Materials, 2015, 91, 225. 72 Boysen R B, Schabron J F. Energy & Fuels, 2013, 27(8), 4654. 73 Speight, James G. Applied Spectroscopy Reviews. 1972, 5(1), 211. 74 Mullins O C. Structures and Dynamics of Asphaltenes, Springer, Germany 1998, pp.21. 75 Mullins O C, Sabbah H, Eyssautier J, et al. Energy & Fuels, 2012, 26(7), 3986. 76 Schuler B, Meyer G, Pena D, et al. Journal of the American Chemical Society, 2015, 137(31), 9870. 77 Taylor S E. Fuel, 1998, 77(8), 821. 78 Dong X, Gou J B, Wang L. Journal of Highway and Transportation Research and Development (Application Technical Edition), 2013, 9(11), 120 (in Chinese). 董鑫, 苟静波, 王龙. 公路交通科技(应用技术版), 2013, 9(11), 120. 79 Oyekunle L O. Petroleum Science and Technology, 2007, 25(11), 1401. 80 Michalica P, Kazatchkov I B, Stastna J, et al. Fuel, 2008, 87(15-16), 3247. 81 Mortazavi M, Moulthrop J S. The SHRP materials reference library, National Research Council, USA, 1993. 82 Yang C, Wang J, Xie J, et al. Road Materials and Pavement Design, 2020, 23(4), 942. 83 Liang W J, Que G H, Chen Y Z. Acat Petrolei Sinica (Petroleum Processing Section), 1991(4), 1 (in Chinese). 梁文杰, 阙国和, 陈月珠. 石油学报(石油加工), 1991(4), 1. 84 Chen H X, He M S, Ji X H, et al. Journal of Chang’an University (Natural Science Edition), 2014, 34(3), 1 (in Chinese). 陈华鑫, 贺孟霜, 纪鑫和, 等. 长安大学学报(自然科学版), 2014, 34(3), 1. 85 Hiroshi I, Hiroshi K. Sekiyu Gakkaishi, 2009, 5(8), 568. 86 Haruya Tanaka. Asphalt (Japan), 1999, 41, 198. 87 Que G H, Liu C G, Chen Y Z, et al. China Petroleum Processing Petrochemical Technology, 1987(6), 32 (in Chinese). 阙国和, 刘晨光, 陈月珠, 等. 石油炼制与化工. 1987(6), 32. 88 Cai T. Test analysis of components and viscosity of asphalt materials. Master’s Thesis, Chang’an University, China, 2005 (in Chinese). 蔡婷. 沥青材料的组分与粘度试验分析. 硕士学位论文, 长安大学, 2005. 89 Wang L L, Chrng G L, Wang H N, et al. New Chemical Materials, 2022, 50(10), 270 (in Chinese). 王立路, 成高立, 汪海年, 等. 化工新型材料, 2022, 50(10), 270. 90 Liu C, Fan S Y, Zhang J F, et al. Contemporary Chemical Industry, 2023, 52(1), 62 (in Chinese). 刘成, 范思远, 张建峰, 等. 当代化工, 2023, 52(1), 62. 91 Wang Z H, Wu X C, Li H L, et al. Petroleum Asphalt, 2020, 34(3), 26 (in Chinese). 王泽华, 武新成, 李宏亮, 等. 石油沥青, 2020, 34(3), 26. 92 Polacco G, Kí P, Filippi S, et al. European Polymer Journal, 2008, 44(11), 3512. 93 Zhang E H, Shan L Y, Qi X F, et al. Construction and Building Materials, 2022, 343, 128001. 94 Ghasemirad A, Bala N, Hashemian L. Molecules, 2020, 25,15. 95 Sultana S, Bhasin A. Construction & Building Materials, 2014, 72(dec. 15), 293. 96 Mansourkhaki A, Ameri M, Daryaee D. Construction and Building Materials, 2019, 203, 83. 97 Mansourkhaki A, Ameri M, Habibpour M, et al. Journal of Materials in Civil Engineering, 2020, 32(4), 04020026. 98 Ye Z Y, Fan X Z, Long J. et al. Acat Petrolei Sinica (Petroleum Processing Section) , 2022, 38(2), 367 (in Chinese). 叶正扬, 樊小哲, 龙军, 等. 石油学报(石油加工), 2022, 38(2), 367. 99 DONG Yu-ming. Research on rheological property and low temperature performance of hard grade bitumen and its mixture. Ph. D. Thesis, Harbin Institute of Technology, China, 2015 (in Chinese). 董雨明. 硬质沥青及其混合料流变特性与低温性能研究. 博士学位论文, 哈尔滨工业大学, 2015. 100 Isacsson U, Zeng H. Construction and Building Materials, 1997, 11(2), 83. 101 Wang Y R, Xiong Y C, Ma X P. et al. Construction and Building Materials, 2022, 328, 127107. 102 Li L, Wang T. Highway, 2023, 68(4), 16 (in Chinese). 李磊, 王涛. 公路, 2023, 68(4), 16. 103 Liu S J, Zhou S B, Peng A H. Journal of Applied Polymer Science, 2020, 137(34), 48984. 104 Wang C, Xie T T, Cao W. Materials and Structures, 2019, 52(5), 98. 105 Salehfard R, Behbahani H, Dalmazzo D, et al. Construction and Building Materials, 2021, 281, 122563. 106 Ye Q S, Yang Z Y, Lv S T, Journal of Cleaner Production, 2023, 419. 138238 107 Xing C, Tan Y Q, Zhang K, et al. China Journal of Highway and Transport, 2020, 33(10), 76. 邢超, 谭忆秋, 张凯, 等. 中国公路学报, 2020, 33(10), 76. 108 Ismael M Q. Innovative Infrastructure Solutions, 2022, 7(2), 136. 109 Li F J, Wang Y H, Zhao K C. Construction and Building Materials, 2022, 329, 127173. 110 Sakib N, Hajj R, Hure R, et al. Journal of Materials in Civil Engineering, 2020, 32(6), 0402014. 111 Haghshenas H F, Rea R, Reinke G, et al. Construction and Building Materials, 2022, 318, 126161. 112 Baditha A K, Muppireddy A R, Kusam S R. Journal of Materials in Civil Engineering, 2022, 34(12), 04022353. 113 Wu K, Zhu K, Kang C, Wu B, et al. Materials & Design, 2016, 103, 223. 114 Bonati A, Merusi F, Polacco G, et al. Construction and Building Materials, 2012, 37, 660. 115 Zhang C C, Xu T, Shi H Q, et al. Journal of Thermal Analysis and Calorimetry, 2015, 122(1), 241. 116 Wang Y H. Research on pyrolysis and combustioncharacteristics and substance transition law of base asphalt. Master Thesis, China Jiliang University, China, 2020 (in Chinese). 王云鹤. 基质沥青热解燃烧特性与物质变迁规律研究. 硕士学位论文, 中国计量大学, 2020. 117 Wilkie C A. Materials Today, 2009, 12(4), 46. 118 Kuppe G J M, Mehta A, Moore R G, et al. Journal of Canadian Petroleum Technology, 2008, 47(1), 38. 119 Firoozifar S H, Foroutan S, Foroutan S. Chemical Engineering Research & Design, 2011, 89(10A), 2044. 120 Xia W J. Combustion behavior of bituminous pavement under tunnel fire and synergistic inhibition mechanism of composite flame retardant. Ph. D. Thesis, Nanjing Forestry Universty, China, 2020 (in Chinese). 夏文静. 隧道火灾下沥青路面燃烧行为及复合阻燃剂协同抑制机理. 博士学位论文, 南京林业大学, 2020. 121 Xu T, Huang X M. Fuel, 2010, 89(9), 2185. 122 Zhu K. Study on calcium-based flame retardant nanocomposites base on multi-components combustion characteristics of asphalt. Ph. D. Thesis, Zhejiang University, China, 2015 (in Chinese). 朱凯. 基于沥青多组分燃烧特性的钙基纳米复合阻燃体系研究. 博士学位论文, 浙江大学, 2015. 123 Zhu K, Qin X W, Wang Y H, et al. Journal of Analytical and Applied Pyrolysis, 2021, 160, 105370. 124 Zhu K, Wang Y H, Tang D Q, et al. Materials, 2019, 12(5), 801. 125 Zhao J W, Huang X M, Xu T. Construction and Building Materials, 2015, 80, 125. 126 Shi H Q. Study on flame retardant and smoke suppression technology of thermal decomposition of asphalt pavement under large urban tunnel fire. Master Thesis, Nanjing Forestry Universty, China, 2016 (in Chinese). 石华泉. 城市大型隧道沥青路面热分解全过程阻燃抑烟技术研究. 硕士学位论文, 南京林业大学, 2016. 127 Alvarez E, Marroquin G, Trejo F, et al. Fuel, 2011, 90(12), 3602. 128 Shi H Q, Xu T, Jiang R L. Fuel, 2017, 192, 18. 129 Yu X, Burnham N A, Mallick R B, et al. Fuel, 2013, 113, 443. 130 Chang R, Wang H X. China Sciencepaper, 2020, 15(4), 420 (in Chinese). 常嵘, 王宏鑫. 中国科技论文, 2020, 15(4), 420. 131 Eberhardsteiner L, Fuessl J, Hofko B, et al. Materials and Structures, 2015, 48(10), 3099. 132 Han K C. Identification of asphalt aging gene and prediction research of aging law based on omics technology. Master Thesis, Shandong Jianzhu University, China, 2019 (in Chinese). 韩科超. 基于组学技术的沥青老化基因鉴定及老化规律预测研究. 硕士学位论文, 山东建筑大学, 2019. 133 Qian G P, Zeng S H, Leiva-Villacorta F. Journal of China and Foreign Highway, 2016, 36(5), 270 (in Chinese). 钱国平, 曾淑慧, Leiva-Villacorta F. 中外公路, 2016, 36(5), 270. 134 Mikhailenko P, Baaj H. Energy & Fuels, 2019, 33(4), 2633. 135 Fernández-Gómez W D, Rondón Quintana H A, Daza C E, et al. Fuel, 2014, 115, 321. 136 Hu D L, Gu X Y, Sun L J, et al. Journal of Traffic and Transportation Engineering, 2023, 23(2), 141 (in Chinese). 胡栋梁, 顾兴宇, 孙丽君, 等. 交通运输工程学报, 2023, 23(2), 141. 137 Liu J X, Chen M Z, Yu W H, et al. Journal of Wuhan University of Technology (Transportation Science & Engineering), 2018, 42(1), 21 (in Chinese). 柳景祥, 陈美祝, 喻文海, 等. 武汉理工大学学报(交通科学与工程版), 2018, 42(1), 21. 138 Zhao Z P, Li Y, Li M Y, et al. Petroleum Refinery Engineering, 2022, 52(1), 59 (in Chinese). 赵泽鹏, 李源, 李梦园, 等. 炼油技术与工程, 2022, 52(1), 59. 139 Nie Y H, Zhang Y L, Yu J Y, et al. Applied Mechanics and Materials. 2012, 204-208, 1659. 140 Kuang D L, Liu W C, Xiao Y, et al. Construction and Building Materials, 2019, 223, 986. 141 Haghshenas H F, Rea R, Reinke G, et al. Journal of Materials in Civil Engineering, 2020, 32, 04019327. 142 Zhang J Z, Sun H, Jiang H G, et al. Construction and Building Materials, 2019, 215, 660. 143 Ingrassia LP, Lu X, Ferrotti G, et al. Journal of Traffic and Transportation Engineering (English Edition), 2020, 7(2), 192. 144 El-Shorbagy A M, El-Badawy S M, Gabr A R. Construction and Building Materials, 2019, 220, 228. 145 Guduru G, Kumara C, Gottumukkala B, et al. Journal of Transportation Engineering, Part B, Pavements. 2021, 147(2), 04021006. 146 Abdelaziz A, Masad E, Epps Martin A, et al. Journal of Materials in Civil Engineering, 2021, 33(10), 04021287. 147 Asadi B, Tabatabaee N, Hajj R. Construction and Building Materials, 2021, 300, 123983. 148 Sotoodeh-Nia Z, Manke N, Williams RC, et al. Road Materials and Pavement Design, 2021, 22(5), 1060. 149 Asli H, Ahmadinia E, Zargar M, et al. Construction and Building Materials, 2012, 37, 398. 150 Li H B, Zhang F, Feng Z X, et al. Construction and Building Materials, 2021, 276, 122138. 151 Oldham D J, Hung A, Parast MM, et al. Construction and Building Materials, 2018, 159, 37. 152 Oldham D J, Rajib A I, Onochie A, et al. Construction and Building Materials, 2019, 208, 543. 153 Zeng W, Wang J, Qin Y C, et al. Journal of Jiangsu University (Natural Science Edition), 2022, 43(1), 119 (in Chinese). 曾蔚, 王杰, 秦永春, 等. 江苏大学学报(自然科学版), 2022, 43(1), 119. 154 Zhou T, Cao L P, Fini E H, et al. Construction and Building Materials, 2020, 249, 118748. 155 Xu G J, Wang H, Sun W. Construction and Building Materials, 2018, 158, 1046. 156 Hu D L, Gu X Y, Dong Q, et al. Journal of Cleaner Production, 2021, 329, 129711. 157 Gong F Y. Digitalized classification of coarse aggregate in asphalt mixture and its application. Ph. D. Thesis, Chang’an University, China, 2019 (in Chinese). 龚芳媛. 沥青混合料中粗集料数字化分类及其应用研究. 博士学位论文, 长安大学, 2019. |
|
|
|