INORGANIC MATERIALS AND CERAMIC MATRIX COMPOSITES |
|
|
|
|
|
Room Temperature Preparation of γ-C2S-based Honeycomb Ceramics and Their Properties |
ZOU Jiawei1, LIU Zhichao1,2,*, WANG Fazhou2
|
1 School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China 2 State Key Laboratory of Silicate Materials for Architecture, Wuhan University of Technology, Wuhan 430070, China |
|
|
Abstract In the context of pollution abatement systems, the preparation of honeycomb ceramics, a pivotal constituent, conventionally necessitates elevated temperature conditions. This research introduces an innovative preparation methodology, proposing the utilization of γ-C2S for the ambient temperature fabrication of honeycomb ceramics through a carbonation curing process, thereby obviating the need for high-temperature sintering. Employing γ-C2S as the primary raw material and incorporating silica fume, water-reducing agents, plasticizers, and water, the plasticity of the raw mixture was meticulously controlled to attain superior mechanical properties in the honeycomb ceramics subsequent to carbonation curing. This study systematically examined the impact of thickening agent content and pre-drying protocols on the compressive strength of honeycomb ceramics. Concurrently, an in-depth analysis of the strength progression and microstructural alterations in honeycomb ceramics subjected to varying durations of carbonation was conducted. The outcomes reveal that an HPMC content of 2.5wt%, pre-drying the samples to a residual moisture content of 0.10, and 12 h of curing under 0.3 MPa CO2 pressure yield a compressive strength of 46.8 MPa in the specimens. The genesis of aragonite-type calcium carbonate during carbonation serves to fill the pores, culminating in heightened material density. This phenomenon stands as the predominant factor contributing to the expeditious advancement of strength in the honeycomb ceramic samples. The monolithic honeycomb ceramic catalyst was made by doping 2.5wt% TiO2, and the methyl orange degradation rate reached 45.12% after 80 min of photocatalysis.
|
Published: 25 February 2025
Online: 2025-02-18
|
|
|
|
1 Hao L M, Huang F H, Wang Y W, et al. Foshan Ceramics, 2021, 31(6), 33 (in Chinese). 郝立苗, 黄妃慧, 王勇伟, 等. 佛山陶瓷, 2021, 31(6), 33. 2 Wang L L, Ma B Y, Liu C M. Refractories, 2022, 56(1), 82 (in Chinese). 王露露, 马北越, 刘春明. 耐火材料, 2022, 56(1), 82. 3 Du Y F, Wen B L, Shu R L, et al. Ceramics International, 2021, 47(24), 34829. 4 Sheng Y L, Peng J F, Ma L, et al. Carbon, 2022, 197, 172. 5 Chen S. Preparation and properties of micron pore silicon carbide porous ceramics. Master’s Thesis, Wuhan Institute of Technology, China, 2022 (in Chinese). 陈松. 微米孔径碳化硅多孔陶瓷的制备及性能研究. 硕士学位论文, 武汉工程大学, 2022. 6 Du L J, Liu W, Hu S L, et al. Journal of the European Ceramic Society, 2014, 34(3), 731. 7 Xiao R, Qin R X, Zhang C X, et al. Journal of Rare Earths, 2021, 39(7), 824. 8 Zhang Q S, Liu Y C, Zeng L K. China Ceramic Industry, 2015, 22(4), 11 (in Chinese). 张全胜, 刘艳春, 曾令可. 中国陶瓷工业, 2015, 22(4), 11. 9 Tan Y C, Liu Z C, Wang F Z. Materials Reports, 2023, 37(1), 77 (in Chinese). 谭益成, 刘志超, 王发洲. 材料导报, 2023, 37(1), 77. 10 Jiang T, Cui K, Chang J. Cement and Concrete Composites, 2023, 24, 105071. 11 Zhao S X, Liu Z C, Wang F Z, et al. ACS Sustainable Chemistry & Engineering, 2021, 9, 6673. 12 Lei M, Deng S M, Huang K Y, et al. Construction and Building Materials, 2022, 353, 129112. 13 Zeng H M, Liu Z C, Wang F Z. Journal of Chinese Ceramic Society, 2022, 48(11), 1801 (in Chinese). 曾海马, 刘志超, 王发洲. 硅酸盐学报, 2022, 48(11), 1801. 14 Wu S K, Huang T Y, Xie Y, et al. Bulletin of the Chinese Ceramic Society, 2023, 42(6), 1898 (in Chinese). 吴胜坤, 黄天勇, 谢岩, 等. 硅酸盐通报, 2023, 42(6), 1898. 15 Liu S H, Zhang C, Guang X M. Journal of Chinese Ceramic Society, 2023, 51(9), 2166 (in Chinese). 刘松辉, 张程, 管学茂. 硅酸盐学报, 2023, 51(9), 2166. 16 Mu Y D. Carbonation-induced hardening mechanism of calcium silicate minerals and the performance-enhancing strategies of the carbonated materials. Ph. D. Thesis, Wuhan University of Technology, China, 2019 (in Chinese). 穆元冬. 硅酸钙矿物碳酸化固化机理及其材料性能提升机制研究. 博士学位论文, 武汉理工大学, 2019. 17 Zhou C S, Ren F Z, Wang Z D, et al. Cement and Concrete Research, 2017, 100, 379. 18 Zhang L Y, Yang J J, You J. Materials Reports, 2023, 37(4), 47 (in Chinese). 张理元, 阳金菊, 尤佳. 材料导报, 2023, 37(4), 47. 19 Zhong K N, Liu Z C, Wang F Z. Additive Manufacturing, 2023, 65, 103442. 20 Mu Y D, Liu Z C, Wang F Z. ACS Sustainable Chemistry & Engineering, 2019, 7(7), 7058. 21 Huang S, Zhang W Q, Liu Z C, et al. Materials Reports, 2023, 37(19), 124 (in Chinese). 黄帅, 张文芹, 刘志超, 等. 材料导报, 2023, 37(19), 124. 22 Dong B, Deng C J, Yu C, et al. Journal of Ceramics, 2023, 44(1), 90 (in Chinese). 董博, 邓承继, 余超, 等. 陶瓷学报, 2023, 44(1), 90. 23 Yu C, Wu Z M, Ding J, et al. Ceramics International, 2019, 45(13), 16612. 24 Cao J F. Preparation and properties of aluminum titanate honeycomb porous ceramics. Master’s Thesis, Kunming University of Science and Technology, China, 2022 (in Chinese). 曹江峰. 钛酸铝蜂窝多孔陶瓷的制备与性能研究. 硕士学位论文, 昆明理工大学, 2022. 25 Liang H L, Wu Y X, Zhao C L, et al. Journal of Ceramics, 2017, 38(5), 666 (in Chinese). 梁海龙, 吴彦霞, 赵春林, 等. 陶瓷学报, 2017, 38(5), 666. 26 Wu J F, He D Z, Xu X H, et al. Energy Storage Science and Technology, 2016, 5(4), 568 (in Chinese). 吴建锋, 何德芝, 徐晓虹, 等. 储能科学与技术, 2016, 5(4), 568. 27 Chen Z, Xu Z K, Cui F D, et al. Journal of the European Ceramic Society, 2022, 42(4), 1685. 28 Ou Z H, Ma B G, Jian S W. Journal of Building Materials, 2013, 16(1), 126 (in Chinese). 欧志华, 马保国, 蹇守卫. 建筑材料学报, 2013, 16(1), 126. 29 Lu L L, Shan R, Shi Y Y, et al. Chemosphere, 2019, 222, 392. 30 Zhang Y L, Xiao G F, Li J H, et al. China Environmental Science, 2021, 41(8), 3546 (in Chinese). 张益兰, 肖高飞, 李剑晗, 等. 中国环境科学, 2021, 41(8), 3546. 31 Choi J H, Hwang J, Kim G, et al. Ceramics International, 2021, 47(5), 7246. |
|
|
|