POLYMERS AND POLYMER MATRIX COMPOSITE |
|
|
|
|
|
Research Progress of Precursor Type Silver Ink for Wearable Electronics |
HOU Mingyue1, YAO Rihui1, LUO Dongxiang2, ZHENG Hua3, LIU Xianzhe4, LI Zhenchao1, CAI Wei5, NING Honglong1,*, PENG Junbiao1
|
1 School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China 2 School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China 3 School of Electronic Engineering and Intelligence, Dongguan University of Technology, Dongguan 523808, Guangdong, China 4 School of Applied Physics and Materials, Wuyi University, Jiangmen 529020, Guangdong, China 5 Ji Hua Laboratory, Foshan 528000, Guangdong, China |
|
|
Abstract Wearable electronics often have the characteristics of small size, lightweight, and good flexibility, and electrode flexibility can effectively improve the comfort, safety, and accuracy of wearable electronics when wearing. As a new type of electronic device manufacturing method, inkjet printing technology has the advantages of low cost, high precision and fast speed, and is an excellent choice for the preparation of flexible electrodes. The development of conductive ink is the most critical link in the printing of flexible electrodes, which fundamentally determines the printing quality and function of the film. In this paper, the research on precursor conductive silver inks suitable for wearable devices is reviewed, mainly starting from the key component of ink, silver precursors, focusing on the preparation and post-processing of precursor silver inks and the latest developments in the field of wearable electronics, and prospecting the development direction of precursor silver inks.
|
Published: 25 February 2025
Online: 2025-02-18
|
|
|
|
1 Gao M, Li L, Song Y. Journal of Materials Chemistry: C, 2017, 5(12), 2971. 2 Amjadi M, Kyung K U, Park I, et al. Advanced Functional Materials, 2016, 26(11), 1678. 3 Cheng Y, Wang R, Sun J, et al. Advanced Materials, 2015, 27(45), 7365. 4 Zeng W, Shu L, Li Q, et al. Advanced Materials, 2014, 26(31), 5310. 5 Hammock M L, Chortos A, Tee B C, et al. Advanced Materials, 2013, 25(42), 5997. 6 Karim N, Afroj S, Malandraki A, et al. Journal of Materials Chemistry: C, 2017, 5(44), 11640. 7 Yan K, Li J, Pan L, et al. APL Materials, 2020, 8(12), 120705. 8 Sanz-Izquierdo B, Batchelor J C, Sobhy M I. IET Microwaves, Antennas & Propagation, 2010, 4(11), 1980. 9 Kennedy T F, Fink P W, Chu A W, et al. IEEE Trans Antennas Propag, 2009, 57(4), 910. 10 Krykpayev B, Farooqui M F, Bilal R M, et al. Microelectron Journal, 2017, 65, 40. 11 Kim J, Kim M, Lee M S, et al. Nature Communications, 2017, 8, 14997. 12 Kim J, Campbell A S, De Ávila B E, et al. Nature Biotechnology, 2019, 37(4), 389. 13 Scheideler W J, Kumar R, Zeumault A R, et al. Advanced Functional Materials, 2017, 27(14), 1606062. 14 Singh M, Haverinen H M, Dhagat P, et al. Advanced Materials, 2010, 22(6), 673. 15 Kwon K, Rahman M K, Phung T H, et al. Flexible and Printed Electronics, 2020, 5, 043003. 16 Gassend V, Hauf C R, Chen J. SID International Symposium Digest of Technical Papers, 2022, 53(1), 398. 17 Calvert P. Chemistry of Materials, 2001, 13(10), 3299. 18 Yang X, Lin Y, Wu T, et al. Opto-Electronic Advances, 2022, 5(6), 210123. 19 Chen J, Lin G, Wang Y, et al. Applied Surface Science, 2017, 396, 202. 20 Bhat K S, Ahmad R, Wang Y, et al. Journal of Materials Chemistry: C, 2016, 4(36), 8522. 21 Lee H, Chou K, Huang K. Nanotechnology, 2005, 16(10), 2436. 22 Farraj Y, Grouchko M, Magdassi S. Chemical Communications, 2015, 51(9), 1587. 23 Raut N C, Al-Shamery K. Journal of Materials Chemistry: C, 2018, 6(7), 1618. 24 Milardović S, Ivanišević I, Rogina A, et al. International Journal of Electrochemical Science, 2018, 13(11), 11136. 25 Ning H L, Tao R Q, Yao R H, et al. Materials Reports, 2018, 32(17), 2959 (in Chinese). 宁洪龙, 陶瑞强, 姚日晖, 等. 材料导报, 2018, 32(17), 2959. 26 Huang Q, Shen W, Xu Q, et al. Materials Chemistry Physics, 2014, 147(3), 550. 27 Zhou X, Li W, Wu M, et al. Applied Surface Science, 2014, 292, 537. 28 Suriati G, Mariatti M, Azizan A. International Journal of Automotive and Mechanical Engineering, 2014, 10, 1920. 29 Li C, Chang S, Su F, et al. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 419, 209. 30 Guo J, Sun Y, Tee C A T H, et al. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 679, 132546. 31 Liu T, Zhao J, Luo D, et al. Surfaces and Interfaces, 2022, 28, 101609. 32 Steinigeweg D, Schlücker S. Chemical Communications, 2012, 48(69), 8682. 33 Lin J, Hsueh Y, Huang J. Journal of Solid State Chemistry, 2014, 214, 2. 34 Ranoszek-Soliwoda K, Tomaszewska E, Socha E, et al. Journal of Nanoparticle Research, 2017, 19(8), 273. 35 Douglas S P, Mrig S, Knapp C E. Chemistry-A European Journal, 2021, 27(31), 8062. 36 Yang Y, Liu D, Zhao P, et al. IET Collaborative Intelligent Manufacturing, 2019, 1(1), 10. 37 Valeton J J P, Hermans K, Bastiaansen C W M, et al. Journal of Materials Chemistry, 2010, 20(3), 543. 38 Knapp C E, Metcalf E A, Mrig S, et al. Chemistry Open, 2018, 7(11), 850. 39 Zheng Y, He Z, Gao Y, et al. Scientific Reports, 2013, 3(1), 1786. 40 Chen J, Zhang J, Wang Y, et al. Journal of Materials Chemistry: C, 2016, 4(44), 10494. 41 Gu Y, Wu A, Federici J F. Thin Solid Films, 2017, 636, 397. 42 Yang W, Wang C, Arrighi V. Journal of Materials Science: Materials in Electronics, 2018, 29(4), 2771. 43 Tamari Y, Gautrein A, Schmiga C, et al. Energy Procedia, 2014, 55, 708. 44 Dearden A L, Smith P J, Shin D Y, et al. Macromolecular Rapid Communications, 2005, 26(4), 315. 45 Kell A J, Paquet C, Mozenson O, et al. ACS Applied Materials & Interfaces, 2017, 9(20), 17226. 46 Logvinenko V, Polunina O, Mikhailov Y, et al. Journal of Thermal Analysis and Calorimetry, 2007, 90, 813. 47 Nakano M, Fujiwara T, Koga N. The Journal of Physical Chemistry C, 2016, 120(16), 8841. 48 Li Y, Kim Y N, Lee E J, et al. Nuclear Instruments and Methods in Physics Research Section B, 2006, 251(2), 425. 49 Abu-Zied B M, Asiri A M. Thermochimica Acta, 2014, 581, 110. 50 Stempien Z, Rybicki E, Rybicki T, et al. Sensors and Actuators B: Chemical, 2016, 224, 714. 51 Mou Y, Zhang Y, Cheng H, et al. Applied Surface Science, 2018, 459, 249. 52 Mou Y, Cheng H, Wang H, et al. Applied Surface Science, 2019, 475, 75. 53 Zhou Y, Xu Z, Bai H, et al. Advanced Materials Technologies, 2023, 8(8), 2201557. 54 Cai Y, Yao X, Piao X, et al. Chemical Physics Letters, 2019, 737, 136857. 55 Wu J T, Hsu S L C, Tsai M H, et al. Thin Solid Films, 2009, 517(20), 5913. 56 Dong Y, Li X, Liu S, et al. Thin Solid Films, 2015, 589, 381. 57 Zope K R, Cormier D, Williams S A. ACS Applied Materials & Interfaces, 2018, 10(4), 3830. 58 Yang W, Mathies F, Unger E L, et al. Journal of Materials Chemistry: C, 2020, 8(46), 16443. 59 Li J, Zhang X, Liu X, et al. Materials & Design, 2020, 185, 108255. 60 Fan P, Zhang W, Yu X, et al. Materials Research Express, 2022, 9(1), 16303. 61 Yang W, Hermerschmidt F, Mathies F, et al. Journal of Materials Science, 2021, 32(5), 6312. 62 Zhou W, Bai S, Ma Y, et al. ACS Applied Materials & Interfaces, 2016, 8(37), 24887. 63 Xie Y, Ouyang S, Wang D, et al. Journal of Materials Science, 2020, 55(33), 15908. 64 Zope K R, Cormier D, Williams S A. ACS Applied Materials & Interfaces, 2018, 10(4), 3830. 65 Yang W, List-Kratochvil E J W, Wang C. Journal of Materials Chemistry:C, 2019, 7(48), 15098. 66 Nie X, Wang H, Zou J. Applied Surface Science, 2012, 261, 554. 67 Wu J, Hsu S L, Tsai M, et al. Journal of Physical Chemistry: C, 2011, 115(22), 10940. 68 Yang W, Wang C, Arrighi V. Journal of Materials Science, 2018, 29(24), 20895. 69 Shi L, Layani M, Cai X, et al. Sensors and Actuators B, Chemical, 2018, 256, 938. 70 Zhou Y C, Ning H L, Wang Y P, et al. Chinese Journal of Luminescence, 2019, 40(9), 1146 (in Chinese). 周艺聪, 宁洪龙, 王一平, 等. 发光学报, 2019, 40(9), 1146. 71 Macneill W, Choi C H, Chang C H, et al. Scientific Reports, 2015, 5, 14845. 72 Ibrahim N, Akindoyo J O, Mariatti M. Journal of Science, Advanced Materials and Devices, 2022, 7(1), 100395. 73 Theodorakos I, Zacharatos F, Geremia R, et al. Applied Surface Science, 2015, 336, 157. 74 Paeng D, Yeo J, Lee D, et al. Applied Physics: A, 2015, 120(4), 1229. 75 Titkov A I, Shundrina I K, Gadirov R M, et al. Materials Today: Procee-dings, 2018, 5(8, Part 2), 16042. 76 Zhao P, Huang J, Nan J, et al. Journal of Materials Processing Technology, 2020, 275, 116347. 77 Sui Y, Zorman C A, Sankaran R M. Plasma Processes and Polymers, 2020, 17(5), 2000009. 78 Godyak V A, Piejak R B, Alexandrovich B M. IEEE Transactions on Plasma Science, 1991, 19(4), 660. 79 Michelmore A, Whittle J D, Short R D, et al. Plasma Process and Polymers, 2014, 11(9), 833. 80 Peng J, Yi M, Zheng K, et al. Journal of Materials Science, 2023, 58(4), 1813. 81 Knapp C E, Chemin J B, Douglas S P, et al. Advanced Materials Technologies, 2018, 3(3), 1700326. 82 Hengge M, Livanov K, Zamoshchik N, et al. Flexible and Printed Electronics, 2021, 6(1), 15009. 83 Perelaer J, De Gans B J, Schubert U S. Advanced Materials, 2006, 18(16), 2101. 84 Vaseem M, Lee S K, Kim J G, et al. Chemical Engineering Journal, 2016, 306, 796. 85 Roberson D A, Wicker R B, MacDonald E. Journal of Electronic Materials, 2012, 41, 2553. 86 Werner C, Godlinski D, Zöllmer V, et al. Journal of Materials Science, Materials in Electronics, 2013, 24, 4367. 87 Hummelgård M, Zhang R, Nilsson H E, et al. PloS One, 2011, 6(2), 17209. 88 Wünscher S, Abbel R, Perelaer J, et al. Journal of Materials Chemistry C, 2014, 2(48), 10232. 89 Perelaer J, De Gans B J, Schubert U S. Advanced Materials, 2006, 18(16), 2101. 90 Kamyshny A, Steinke J, Magdassi S. The Open Applied Physics Journal, 2011, 4(1), 19. 91 Bidoki S M, Nouri J, Heidari A A. Journal of Micromechanics And Microengineering, 2010, 20(5), 55023. 92 Vaseem M, Mckerricher G, Shamim A. ACS Applied Materials & Interfaces, 2016, 8(1), 177. 93 Ju B, Kim I, Li B M, et al. Advanced Healthcare Materials, 2021, 10(20), 2100893. 94 Kim I, Ju B, Zhou Y, et al. ACS Applied Materials & Interfaces, 2021, 13(20), 24081. |
|
|
|