| METALS AND METAL MATRIX COMPOSITES |
|
|
|
|
|
| Study on the Electrocatalytic Oxygen Reduction Mechanism of Bronze Corrosion Accelerated by Corrosion Products |
| FANG Yuan1,*, LI Yu1, JING Jiazhe1, FAN Shimin1, HAN Runrun1, WU Wenling1, LUO Hongjie1,2,ZHU Jianfeng1,*
|
1 School of Materials Science and Engineering, Shaanxi University of Science and Technology, School of Cultural Relics Protection Science and Technology, Key Laboratory of Materials and Technology for Unearthed Cultural Heritage Conservation, Ministry of Education, Xi’an 710021, China 2 School of Materials Science and Engineering, Shanghai 200000, China |
|
|
|
|
Abstract In this work, the Cu-Sn-Pb bronze samples with similar structure and composition to ancient bronzes were obtained by electroplating method. The samples were aged by artificial corrosion using chemical corrosion solution. And then we compared the corrosion rates of bronze samples before and after artificial corrosion under different atmospheres (N2, O2, air). In order to evaluate the influence of five main corrosion pro-ducts (CuCl, Cu2(OH)2CO3, Cu2(OH)3Cl, Cu(OH)2, and CuO) on the corrosion process of bronze artifacts, the electrochemical testing platform was used. Three types of electrode structures, such as the bronze sample electrode, glass carbon electrode and porous electrode, were employed to test the electrocatalytic oxygen reduction activity of the above five corrosion products. The potentiodynamic polarization, electrochemical impedance spectroscopy, polarization and cyclic voltammetry tests were performed. The results revealed that CuCl exhibited the highest catalytic activity for the oxygen reduction reaction among the corrosion products. Based on these findings, we proposed the porous oxygen electrode catalytic model during the corrosion process of bronze artifacts.
|
|
Published: 25 December 2025
Online: 2025-12-17
|
|
|
|
|
1 Luo N. Research on Heritages and Preservation, 2017, 2(5), 181 (in Chinese). 罗宁. 遗产与保护研究, 2017, 2(5), 181. 2 He T Y, Wang H N, Liang H Z, et al. Materials Protection, 2024, 57(6), 96(in Chinese). 和天逸, 王海宁, 梁皓哲, 等. 材料保护, 2024, 57(6), 96. 3 Zhao L, Li Q, Zhao T L. Journal of Chinese Society for Corrosion and Protection, 2023, 43(6), 1165 (in Chinese). 赵璐, 李谦, 赵天亮. 中国腐蚀与防护学报, 2023, 43(6), 1165. 4 Monticelli C, Balbo A. Corrosion Science, 2018, 148(12), 144. 5 Chen H, Tian J, Li X F, et al. Yunnan Chemical Technology, 2012, 39(6), 37 (in Chinese). 陈颢, 田建, 李晓帆, 等. 云南化工, 2012, 39(6), 37. 6 Wang J L, Xu C C, Yu N. Corrosion Science and Protection Technology, 2005(5), 324 (in Chinese). 王菊琳, 许淳淳, 于淼. 腐蚀科学与防护技术, 2005(5), 324. 7 Yan Y, Zou C, Zhang L H, et al. Research on Chemical Intermediates, 2020, 46, 5087. 8 Kosec T, ćurković H O, Legat A. Electrochimica Acta, 2010, 56, 722. 9 Piccardo P, Mrdlinger M, Ghiara G. Applied Physics A, 2013, 113(4), 1039. 10 Feng S B, Hu F H, Feng L T. Corrosion and Protection, 2009, 30(1), 7 (in Chinese). 冯绍彬, 胡芳红, 冯丽婷. 腐蚀与防护, 2009, 30(1), 7. 11 Cicileo G P, Crespo M A, Rosales B M. Corrosion Science, 2004, 46(04), 929. 12 Kareem K, Sultan S, He L. Materials Chemistry and Physics, 2016, 169, 158. 13 Piccardo P, Mrdlinger M, Ghiara G. Applied Physics A, 2013, 113(4), 1039. 14 Picciochi R, Ramos A C, Mendonca M H, et al. Journal of Applied Electrochemistry, 2004, 34(34), 989. 15 Zhou H, Zhu H F, Cai L K. Sciences of Conservation and Archaeology, 2005, 17(3), 22 (in Chinese). 周浩, 祝鸿范, 蔡兰坤. 文物保护与考古科学, 2005, 17(3), 22. 16 Chen S Y, Zhang R, Wang N, et al. Sciences of Conservation and Archaeology, 2014, 26(3), 47 (in Chinese). 陈淑英, 张然, 王辇, 等. 文物考古与保护科学, 2014, 26(3), 47. 17 Lin Y, Yan Y, Wu X W, et al. Surface Technology, 2017, 46(2), 46 (in Chinese). 林颖, 闫莹, 吴雪威, 等. 表面技术, 2017, 46(2), 46. 18 Ghiara G, Piccardo P, The Journal of The Minerals, Metals and Materials Society, 2014, 66(5), 793. 19 Feng L T, Su C, Feng S B, et al. Journal of Materials Protection, 2010, 43(11), 14 (in Chinese). 冯丽婷, 苏畅, 冯绍彬, 等. 材料保护, 2010, 43(11), 14. 20 Liang Z P. Materials and Corrosion, 2019, 71(4), 617. 21 Curkovic H O. Electrochimica Acta, 2012, 83, 29. 22 Zou G, Cui J, Liu X, et al. Archaeological and Anthropological Sciences, 2019, 11(1), 15. 23 He K T. Studies in the History of Natural Sciences, 1997, 16(3), 273. 何堂坤. 自然科学史研究, 1997, 16(3), 273. 24 Yun Y, Scott D A. Archaeological and Anthropological Sciences, 2020, 12(6), 1. 25 Liang Z, Jiang K, Zhang T. Corrosion Science, 2021, 191, 109721. 26 Chen D, Yang Y, Wang T, et al. Journal of Archaeological Science, Reports, 2021, 40, 103218. 27 Chen D, Yang Y, Wang T, et al. Heritage Science, 2022, 10(1), 1. 28 Trentelman K, Stodulski L, Scott D, et al. Studies in conservation, 2002, 47(4), 217. 29 Fan X, Wang Q, Wang Y. Archaeological and Anthropological Sciences, 2020, 12(4), 1. 30 Luo W, Song G, Hu Y, et al. Journal of Cultural Heritage, 2020, 46, 304. 31 Peng X, Wang J, Wang J L, et al. Journal of Chinese Society for Corrosion and Protection, 2013, 33(6), 449 (in Chinese). 彭欣, 王佳, 王金龙, 等. 中国腐蚀与防护学报, 2013, 33(6), 449. 32 Zou Y, Wang J, Zheng Y Y. Journal of Chinese Society for Corrosion and Protection, 2011, 31(2), 91 (in Chinese). 邹妍, 王佳, 郑莹莹. 中国腐蚀与防护学报, 2011, 31(2), 91. |
| [1] |
LI Yi, LIU Jingxiao, SHI Fei, YANG Dayi, TIAN Ziwei, WANG Meiyu, WAN Jiaxiang, CHEN Chaofan, LYU Zhenjie. Synthesis of CsxWO3 Particles for High Near Infrared Shielding Film by Oxalic Acid Thermal Reduction[J]. Materials Reports, 2025, 39(7): 23060135-8. |
|
|
|
|