| POLYMERS AND POLYMER MATRIX COMPOSITES |
|
|
|
|
|
| Research Progress on Applying ZSM-22 to Alkane Hydroisomerization |
| WANG Zhiying1,2, SAN Xiaoguang1,*, MIAO Yulu1,2, DONG Lei2
|
1 College of Chemical Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China 2 Dalian Institute of Chemical Physics (DICP), Chinese Academy of Sciences, Dalian 116023, Liaoning, China |
|
|
|
|
Abstract The bifunctional catalysts with zeolites as supports have long been the main research topic in the hydroisomerization of alkanes. ZSM-22, as a type of single dimensional zeolite, has demonstrated excellent shape selectivity in the isomerization reaction. However, the crystal morphology-induced diffusion limitation of ZSM-22 is an unavoidable obstacle to its application. This review briefly describes the diffusion and hydroisomerization mechanism of alkanes, and outlines the efforts in exploring and hypothesizing the preparation of ideal ZSM-22 made by global researchers in recent years. It focuses on the methods of adjusting, doping, and postprocessing of zeolites to elaborate their influence on the catalytic performance, and summarizes the optimization law of the zeolite support as well as its limitations in the preparation process. The structure-activity relationship between the modified molecular sieve properties and the catalytic performance is discussed in detail. The paper ends with a discussion about the future trends of the research on postprocessing ZSM-22 for enhancing its quality and efficiency.
|
|
Published: 25 December 2025
Online: 2025-12-17
|
|
|
|
|
1 Dai X J, Cheng Y, Liu T T, et al. Energy & Fuels, 2024, 38(11), 9262. 2 Zhang W, Li S, Zhang H P, et al. ChemistrySelect, 2023, 8(48), e202301216. 3 Zhang Y, Guo C M, Wang W, et al. Fuel Processing Technology, 2024, 256, 108076. 4 Kang Y H, Zhang X Q, Gao J, et al. Chemical Engineering Journal, 2024, 483, 149372. 5 Tang R Y, Zhang J T, Shen Z B, et al. Journal of the Energy Institute, 2024, 114, 101652. 6 Shamanaev I V, Vlasova E N, Scherbakova A M, et al. Microporous and Mesoporous Materials, 2023, 359, 112667. 7 Gu Y B, Wei R P, Ren X Q, et al. Catalysis Letters, 2007, 113(1-2), 41. 8 Laxmi N C S, Thybaut J W, Marin G B, et al. Journal of Catalysis, 2003, 220(2), 399. 9 Cheng K, van der Wal Lars I, Yoshida H, et al. Angewandte Chemie, 2020, 132(9), 3620. 10 GB 17930-2016 Gasoline for motor vehicles, Standard Press of China, China, 2016(in Chinese). GB 17930-2016 车用汽油, 中国标准出版社, 2016. 11 Tan Y C, Hu WenJ, Du Y Y, et al. Applied Catalysis A, 2021, 611, 117916. 12 Webb E B, Grest G S, Mondello M. Journal of Physical Chemistry B, 1999, 103, 4949. 13 Yu G, Qiu M H, Wang T, et al. Microporous and Mesoporous Materials, 2021, 320, 111076. 14 Li T, Zhang L, Tao Z C, et al. Fuel, 2020, 279, 118487. 15 Noh G, Zones S I, Iglesia E. Journal of Catalysis, 2019, 377, 255. 16 Poursaeidesfahani A, de Lange M F. Journal of Catalysis, 2017, 353, 54. 17 Guisnet M. Catalysis Today, 2013, 218-219, 123. 18 Ono Y. Catalysis Today, 2003, 81(1), 3. 19 López C M, Sazo V, Pérez P, et al. Applied Catalysis A, 2010, 372(1), 108. 20 Liu L L, Zhang M W, Wang L, et al. Fuel Processing Technology, 2023, 241, 107605. 21 Kriz J F, Pope T D, Stanciulescu M. Industrial & Engineering Chemistry Research, 1998, 37, 4560. 22 Souverijns W, Martens J A, Froment G F, et al. Journal of Catalysis, 1998, 174, 177. 23 Wiedemann S C C, Ristanović Z, Whiting G T, et al. Chemistry-a European Journal, 2015, 22(1), 199. 24 Tiong S S. Industrial & Engineering Chemistry Research, 1993, 32, 3. 25 Tiong S S. Industrial & Engineering Chemistry Research, 1993, 32, 403. 26 Dhar A, Vekariya R L, Sharma P. Petroleum, 2017, 3(4), 489. 27 Mihályi R M, Lónyi F, Beyer H K, et al. Journal of Molecular Catalysis A, 2013, 367, 77. 28 Matens J A, Jacobs P A. Journal of Catalysis, 1990, 124, 357. 29 Thybaut J W, Marin G B. Advances in Catalysis, 2016, 59(360-564), 109. 30 Brouwer D M, Hogeveen H. Progress in Physical Organic Chemistry, 1972, 9, 179. 31 Chen F, Wang X D, Huang W, et al. Chemical Industry and Engineering Progress, 2024, 43(3), 1309 (in Chinese). 陈风, 王宣德, 黄伟, 等. 化工进展, 2024, 43(3), 1309. 32 Sousa J L V, Ribeiro T R S, Silva B J B, et al. Research, Society and Development, 2022, 11(3), 2525. 33 Chen L, Lu P, Yuan Y Y, et al. Chinese Journal of Catalysis, 2016, 37(8), 1381. 34 Jamil A K, Muraza O, Yoshioka M, et al. Industrial & Engineering Chemistry Research, 2014, 53(50), 19498. 35 Chen Z Q, Liu S Y, Wang H H, et al. Journal of Catalysis, 2018, 361, 177. 36 Okamoto M, Nishimura Y, Takahashi M, et al. Crystal Growth& Design, 2018, 18(11), 6573. 37 Wang Q, Shan H C, Sim L B. Industrial & Engineering Chemistry Research, 2023, 62, 11470. 38 Wang Y C, Yu J S, Yang F, et al. Industrial & Engineering Chemistry Research, 2023, 62(26), 10012. 39 Jamil A K, Muraza O, Sanhoob M, et al. Journal of Analytical and Applied Pyrolysis, 2014, 110, 338. 40 Zhang L, Fu W Q, He L W, et al. Microporous and Mesoporous Materials, 2021, 313, 110834. 41 Jamil A K, Muraza O, Al-Amer A M T. Journal of Industrial and Engineering Chemistry, 2015, 29, 112. 42 Luo Y, Wang Z D, Jin S Q, et al. Catalysis Science & Technology, 2016, 18(30), 5611. 43 Wang L, Niu P Y, Xi H J, et al. Industrial & Engineering Chemistry Research, 2021, 60(47), 17006. 44 Wang X Y, Zhang X W, Wang Q F. Materials Letters, 2019, 244, 96. 45 Liu S Y, Ren J, Zhu S J, et al. Journal of Catalysis, 2015, 330, 485. 46 Li T S, Chen T, Ye Y H, et al. Chinese Journal of Chemical Engineering, 2024, 66, 51. 47 Jamil A K, Nishitoba T, Ahmed M H M, et al. Energy & Fuels, 2019, 33(12), 12679. 48 He L W, Fu W Q, Li L Y, et al. New Journal of Chemistry, 2021, 45(5), 2820. 49 Xie Z K, Chen Q L, Zhang C F, et al. Journal of Physical Chemistry B, 2000, 104, 853. 50 Groen J C, Moulijn J A, Pérez-Ramírez J. Journal of Materials Chemistry, 2006, 16(22), 2121. 51 Groen J C, Jansen J C, Moulijn J A, et al. Journal of Physical Chemistry, 2004, 108, 13062. 52 Guo K, Ma A Z, Wang Z J, et al. New Journal of Chemistry, 2022, 46(35), 16752. 53 Liu H, Xie S J, Xin W J, et al. Catalysis Science & Technology, 2016, 6(5), 1328. 54 Li S Y, Lu B B, Wang Y G, et al. Fuel Processing Technology, 2023, 246, 107759. 55 Gackowski M, Tarach K, Kuterasiński Ł, et al. Microporous and Mesoporous Materials, 2018, 263, 282. 56 Del Campo P, Beato P, Rey F, et al. Catalysis Today, 2018, 299, 120. 57 Liu S Y, Luo C L, Deng X, et al. Fuel, 2022, 328(15), 125282. 58 Liu S Y, Ren J, Zhang H K, et al. Journal of Catalysis, 2016, 335, 11. 59 Liu S Y, Zhang L, Zhang L W, et al. New Journal of Chemistry, 2020, 44(12), 4744. 60 Wang X Y, Zhang X W, Wang Q F. Industrial & Engineering Chemistry Research, 2019, 58(19), 8495. 61 Wang X Y, Zhang X W, Wang Q F. Applied Catalysis A, 2020, 590, 117335. 62 Kuznetsov P S, Dementiev K I, Palankoev T A, et al. Petroleum Chemistry, 2021, 61(6), 649. 63 Wang J B, Xu S T, Li J Z, et al. RSC Advances, 2015, 5(108), 88928. 64 Kurniawan T, Muraza O, Miyake K, et al. Industrial & Engineering Chemistry Research, 2017, 56(15), 4258. 65 Zheng Y F, Ding H X, Xing E H, et al. Catalysis Today, 2022, 405-406, 30. 66 Zhai M, Wu W X, Xing E H, et al. Chemical Engineering Journal, 2022, 440, 135874. 67 Lv G, Wang C X, Wang P, et al. ChemCatChem, 2019, 11(5), 1431. 68 Utsunomiya T, Kanzawa T, Ichii T, et al. Thin Solid Films, 2017, 638, 28. 69 Abdalla A, Arudra P, Al-Khattaf S S. Applied Catalysis A, 2017, 533, 109. 70 Niu P Y, Xi H J, Ren J, et al. Catalysis Science & Technology, 2018, 8(24), 6407. |
|
|
|