| INORGANIC MATERIALS AND CERAMIC MATRIX COMPOSITES |
|
|
|
|
|
| The Thermal Conductivity of Glazed Hollow Bead Insulation Mortar Modified by Phase Change Paraffin |
| JIA Liang*, ZHANG Weiwei, CHEN Zhenrui
|
| School of Civil Engineering, Lanzhou University of Technology, Lanzhou 730050, China |
|
|
|
|
Abstract In order to enhance the thermal insulation performance of glazed hollow bead insulation mortar, microencapsulated phase change paraffin was added as phase change materials (PCMs) in the thermal insulation mortar to modify the mortar. The effect of microencapsulated phase change paraffin on the thermal conductivity of mortar was studied. Based on the central complex design test of the response surface method, ta-king the water-binder ratio, the amount of vitrified microbeads and the quantity of microencapsulated phase change paraffin were as the influence factors, and taking the thermal conductivity as the response surface a three-dimensional response model for the thermal conductivity of mortar was established to seek the optimal mix ratio of thermal insulation mortar, minimizing the thermal conductivity of modified vitrified microbeads thermal insulation mortar. The findings show that microencapsulated phase change paraffin can significantly improve the thermal insulation perfor-mance of vitrification microbeads insulation mortar. When the amount of vitrification microbeads and microencapsulated phase change paraffin is 73.54% and 5.54%, respectively, and the water-binder ratio is 3.542, the thermal conductivity of the insulation mortar reduces by 35.71% compared with the maximum value of 0.070 W/(m·K) stipulated in the code. The accuracy of the Maxwell model to predict mortar thermal conductivity is from 94.7% to 99.9%.
|
|
Published: 10 November 2025
Online: 2025-11-10
|
|
|
|
|
1 Gong J, Duan Z, Sun K, et al. Construction and Building Materials, 2016, 123, 274. 2 Tan S, Zhang X. Journal of Energy Storage, 2023, 61, 106772. 3 Jayalath A, Nicolas S R, Sofi M, et al. Construction and Building Materials, 2016, 120, 408. 4 Sun R R, Li H J, Huang F L, et al. Bulletin of the Chinese Ceramic Society, 2020, 39(3), 662(in Chinese). 孙茹茹, 李化建, 黄法礼, 等. 硅酸盐通报, 2020, 39(3), 662. 5 Shi W, Wang C T. Bulletin of the Chinese Ceramic Society, 2015, 34 (12), 3517(in Chinese). 史巍, 王传涛. 硅酸盐通报, 2015, 34 (12), 3517. 6 Shi C, Wang P, Yang L. Materials China, 2022, 41(8), 607(in Chinese). 史琛, 王平, 杨柳. 中国材料进展, 2022, 41(8), 607. 7 Cheng X L, Mu R, Sun T, et al. Materials Reports, 2024, 38(5), 73(in Chinese). 成鑫磊, 穆锐, 孙涛, 等. 材料导报, 2024, 38(5), 73. 8 Long Y, Wang Y, Liu T L, et al. Materials Reports, 2024, 38(9), 272(in Chinese). 龙勇, 王宇, 刘天乐, 等. 材料导报, 2024, 38(9), 272. 9 Shi J, Tan J, Liu B, et al. Journal of Energy Storage, 2020, 32, 101719. 10 Fan S J, Wang P M. Journal of Building Materials, 2017, 20(1), 118(in Chinese). 范树景, 王培铭. 建筑材料学报, 2017, 20(1), 118. 11 Zhou L M, Wang C, Zeng Q P, et al. Concrete, 2016 (6), 106(in Chinese) 周立民, 王冲, 曾欠谱, 等. 混凝土, 2016 (6), 106. 12 Wang Z X, Liu Y Z, Huo Y T, et al. Concrete, 2019 (8), 121(in Chinese) 王朝旭, 刘元珍, 霍英涛, 等. 混凝土, 2019 (8), 121. 13 Wang H F. Concrete, 2013, 7, 99(in Chinese) 王海峰. 混凝土, 2013, 7, 99. 14 Hou Y F, Zhang Y, Huang T Y. Journal of Beijing University of Civil Engineering and Architecture, 2021, 37(4), 1(in Chinese) 侯云芬, 张莹, 黄天勇. 北京建筑大学学报, 2021, 37(4), 1. 15 Chen Z R. Preparation and properties of modified vitrified microsphere thermal insulation mortar. Master’s Thesis, Lanzhou University of Technology, China, 2023(in Chinese) 陈振瑞. 改性玻化微珠保温砂浆的研制及性能研究. 硕士学位论文, 兰州理工大学, 2023. 16 Joulin A, Zalewski L, Lassue S, et al. Applied Thermal Engineering, 2014, 66(1-2), 171. 17 Zhu L H, Lin H W, Han W. Materials Reports, 2023, 37 (12), 117(in Chinese) 朱丽华, 刘海林, 韩伟. 材料导报, 2023, 37 (12), 117. 18 Du Y B, Ge Y. Bulletin of the Chinese Ceramic Society, 2022(2), 50(in Chinese) 杜渊博, 葛勇. 硅酸盐学报, 2022(2), 50. 19 Chen C, Qian C X, Xu Y B. Journal of Building Materials, 2011, 14(1), 78(in Chinese) 陈春, 钱春香, 许燕波. 建筑材料学报, 2011, 14(1), 78. 20 Bao L L, Jin P F, Wang X, et al. Science Technology and Engineering, 2022, 22(19), 8327(in Chinese) 鲍玲玲, 靳鹏飞, 王雪, 等. 科学技术与工程, 2022, 22(19), 8327. 21 Islam S, Bhat G. Heat and Mass Transfer, 2023, 59(11), 2023. 22 Gong J W, Chen P, Cao G J, et al. Journal of Building Materials, 2023, 26(5), 465(in Chinese) 宫经伟, 陈鹏, 曹国举, 等. 建筑材料学报, 2023, 26(5), 465. 23 Zhou E S, Lu Z Y, Yan Y. Materials Reports, 2009, 23(6), 69(in Chinese) 周顺鄂, 卢忠远, 严云. 材料导报, 2009, 23(6), 69. 24 Pietrak K, Wiśniewski T S. Journal of Power Technologies, 2015, 95(1). 25 Shen M, Cui Y, He J, et al. International Journal of Minerals, Metallurgy, and Materials, 2011, 18(5), 623. |
|
|
|