POLYMERS AND POLYMER MATRIX COMPOSITES |
|
|
|
|
|
Design Principle and Adhesion Enhancing Strategies of Injectable Hemostatic Hydrogel |
LIU Shuhan1,2, DING Sheng1, HOU Kexin1, CHENG Yali1, ZHANG Shaohui1, LI Fan1,*, YANG Kun1,*
|
1 Systems Engineering Institute, Academy of Military Sciences, People's Liberation Army, Tianjin 300161, China 2 MOE Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China |
|
|
Abstract Most injectable hydrogels either fail to cohere due to a lack of mechanical strength or have insufficient bonding capacity to sustain adhesion due to insufficient interfacial interaction between tissue and biomaterial. Ideal hydrogel materials should have optimal cohesive strength to mimic the stiffness and elasticity of natural tissues, as well as appropriate bond strength to seal wounds with physical methods and to resist mechanical movement with some intensity. Indeed, the adhesion performance of hydrogel is determined by the bonding and cohesion together;within the appropriate equilibrium, a single increase in cohesion or adhesion can produce adhesion enhancement, but once the balance is destroyed, the two will be opposing constraints on each other. Learning the design principles and adhesion enhancement strategies of injectable hemostatic hydrogels is the key to the research and technology transformation of hemostatic hydrogels. This paper introduces the design principles of high-strength injectable hydrogels and analyzes the design strategies and methods of adhesion enhancement from the dimensions of cohesion and bonding with examples. Finally, we summarize and look forward to the precautions in the process of designing injectable hydrogels as well as the future development direction.
|
Published:
Online: 2025-08-28
|
|
|
|
1 Park B, Shin J H, Ok J, et al. Science, 2022, 376(6593), 624. 2 Hua M, Wu S, Ma Y, et al. Nature, 2021, 590(7847), 594. 3 El Halawany M, Khashaba M, AbouGhaly M H H, et al. International Journal of Pharmaceutics, 2024, 659(25), 124219. 4 Wang Y, Pan P, Liang H, et al. Biomacromolecules, 2024, 25(2), 819. 5 Zhao X, Huang Y, Li Z, et al. Advanced Materials, 2024, 36(15), 2308701. 6 Chen Z, Yao J, Zhao J, et al. International Journal of Biological Macromolecules, 2023, 225, 1235. 7 Kamedani M, Okawa M, Madhavikutty A S, et al. Biomacromolecules, 2024, 25(3), 1790. 8 Chen Z, Zhao J, Wu H, et al. Carbohydrate Polymers, 2023, 303(1), 120434. 9 Du Y, Chen X, Li L, et al. Carbohydrate Polymers, 2023, 318(15), 121049. 10 Li M, Dai Q, Zhu S, et al. Chemical Engineering Journal, 2023, 469(1), 143758. 11 Zhang F X, Chien M H, Fan Q R, et al. Advanced Functional Materials, 2024, 34(32), 2316540. 12 Kim B J, Oh D X, Kim S, et al. Biomacromolecules, 2014, 15(5), 1579. 13 von Fraunhofer J A. International Journal of Dentistry, 2012, 2012(1), 951324. 14 Volinsky A A, Moody N R, Gerberich W W. Acta Materialia, 2002, 50(3), 441. 15 Zhao X, Chen X, Yuk H, et al. Chemical Reviews, 2021, 121(8), 4309. 16 Kuang X, Arıcan M O, Zhou T, et al. Accounts of Materials Research, 2023, 4(2), 101. 17 Rose S, Prevoteau A, Elzière P, et al. Nature, 2014, 505(7483), 382. 18 Yuk H, Zhang T, Lin S, et al. Nature Materials, 2016, 15(2), 190. 19 Song R, Wang X, Johnson M, et al. Advanced Functional Materials, 2024, 34(23), 2313322. 20 Cao J, Wu P, Cheng Q, et al. ACS Applied Materials & Interfaces, 2021, 13(20), 24095. 21 Steiner T. Angewandte Chemie International Edition, 2002, 41(1), 48. 22 Ma H, Axi Y, Lu Y, et al. International Journal of Biological Macromo-lecules, 2024, 265, 130780. 23 Dong L, Han Z, Zhang H, et al. International Journal of Biological Macromolecules, 2022, 208(31), 530. 24 Liu S, Jiang N, Chi Y, et al. ACS Biomaterials Science & Engineering, 2022, 8(9), 3754. 25 Li X, Sun S, Feng X, et al. Journal of Biomaterials Science: Polymer Edition, 2023, 34(2), 184. 26 Weian W, Yunxin Y, Ziyan W, et al. Biomaterials Science, 2024, 12(6), 1405. 27 Shin H H, Ryu J H. Biomimetics, 2023, 8(7), 542. 28 Xiong M, Chen Y, Hu H J, et al. Carbohydrate Polymers, 2024, 341, 122348. 29 Guo S, Ren Y, Chang R, et al. ACS Applied Materials & Interfaces, 2022, 14(30), 34455. 30 Su X, Xie W, Wang P, et al. Materials Horizons, 2021, 8(8), 2199. 31 Bai S, Zhang X, Cai P, et al. Nanoscale Horizons, 2019, 4(6), 1333. 32 Gu H, Li H, Wei L, et al. Regenerative Biomaterials, 2023, 10, rbad018. 33 Shi J, Wang D, Wang H, et al. Acta Biomaterialia, 2022, 145, 106. 34 Ni P, Ye S, Xiong S, et al. Journal of Materials Chemistry B, 2023, 11(23), 5207. 35 Lee D, Hwang H, Kim J S, et al. ACS Applied Materials & Interfaces, 2020, 12(18), 20933. 36 Chen G, Yu Y, Wu X, et al. Advanced Functional Materials, 2018, 28(33), 1801386. 37 Liu Y, Li K, Tian J, et al. Nature Communications, 2023, 14(1), 5145. 38 Cui C, Fan C, Wu Y, et al. Advanced Materials, 2019, 31(49), 1905761. 39 Peng X, Li Y, Li T, et al. Advanced Science, 2022, 9(31), 2203890. 40 Braccini I, Pérez S. Biomacromolecules, 2001, 2(4), 1089. 41 Peng X, Xu X, Deng Y, et al. Advanced Functional Materials, 2021, 31(33), 2102583. 42 Wei R, Chen T, Wang Y, et al. Macromolecular Bioscience, 2021, 21(5), e2000367. 43 Wang W, Liu Y, Liu Y, et al. Giant, 2023, 16, 100197. 44 Yang Y, He G, Pan Z, et al. Advanced Materials, 2024, 36(33), 2404811. 45 Singh G, Nayal A, Malhotra S, et al. Carbohydrate Polymers, 2020, 247(1), 116757. 46 Jorgensen W L, Severance D L. Journal of the American Chemical Society, 1990, 112(12), 4768. 47 Deng J H, Luo J, Mao Y L, et al. Science Advances, 2020, 6(2), eaax9976. 48 Fan H, Wang J, Tao Z, et al. Nature Communications, 2019, 10(1), 5127. 49 Ma J C, Dougherty D A. Chemical Reviews, 1997, 97(5), 1303. 50 Ni Z, Yu H, Wang L, et al. Advanced Healthcare Materials, 2022, 11(1), 2101421. 51 Suneetha M, Rao K M, Han S S. ACS Omega, 2019, 4(7), 12647. 52 Fan X, Wang S, Fang Y, et al. Materials Science and Engineering:C, 2020, 109, 110649. 53 Song F, Kong Y, Shao C, et al. Acta Biomaterialia, 2021, 136, 170. 54 Huang W, Cheng S, Wang X, et al. Advanced Functional Materials, 2021, 31(22), 2009189. 55 Teng L, Shao Z, Bai Q, et al. Advanced Functional Materials, 2021, 31(43), 2105628. 56 Xu W, Nan Y, Jin Y, et al. Chemistry of Materials, 2022, 34(19), 8740. 57 Marco-Dufort B, Tibbitt M W. Materials Today Chemistry, 2019, 12, 16. 58 Zou W, Dong J, Luo Y, et al. Advanced Materials, 2017, 29(14), 1606100. 59 Jin Y, Yu C, Denman R J, et al. Chemical Society Reviews, 2013, 42(16), 6634. 60 Liang Y, Li M, Yang Y, et al. ACS Nano, 2022, 16(2), 3194. 61 Ding X, Li G, Zhang P, et al. Advanced Functional Materials, 2021, 31(19), 2011230. 62 Xu X, Xia X, Zhang K, et al. Science Translational Medicine, 2020, 12(558), eaba8014. 63 Ryu J H, Lee Y, Kong W H, et al. Biomacromolecules, 2011, 12(7), 2653. 64 Saiz-Poseu J, Mancebo-Aracil J, Nador F, et al. Angewandte Chemie International Edition, 2019, 58(3), 696. 65 Zhang F X, Liu P, Ding W, et al. Biomaterials, 2021, 278, 121169. 66 Chen K, Wu Z, Liu Y, et al. Advanced Functional Materials, 2022, 32(12), 2109687. 67 Wu Y D, Hong D, Hao W J, et al. Chinese Journal of Biomedical Engineering, 2021, 40(5), 590(in Chinese). 吴益栋, 洪丹, 郝文娟, 等. 中国生物医学工程学报, 2021, 40 (5), 590. 68 Geng H, Dai Q, Sun H, et al. ACS Applied Bio Materials, 2020, 3(2), 1258. 69 Cheng H, Yu Q, Chen Q, et al. Biomaterials Science, 2023, 11(3), 931. 70 Yuan Y, Shen S, Fan D. Biomaterials, 2021, 276, 120838. 71 Rafieian S, Mirzadeh H, Mahdavi H, et al. Science and Engineering of Composite Materials, 2019, 26(1), 154. 72 Huang T D, Cao Y Y, Jiang Y J, et al. Chinese Journal of Analytical Chemistry, 2023, 51(6), 982(in Chinese). 黄童黛, 曹玉玉, 江云静, 等. 分析化学, 2023, 51 (6), 982. 73 Wang Q, Gao Z. Journal of the Mechanics and Physics of Solids, 2016, 94, 127. 74 Yang C M, Lee J, Lee S Y, et al. Gels, 2022, 8(10), 650. 75 Tian Y, Guan P, Wen C, et al. ACS Applied Materials & Interfaces, 2022, 14(49), 54488. 76 Gao L T, Chen Y M, Aziz Y, et al. Carbohydrate Polymers, 2024, 330(15), 121812. 77 Li J, Suo Z, Vlassak J J. Journal of Materials Chemistry B, 2014, 2(39), 6708. 78 Wang W, Narain R, Zeng H. Frontiers in Chemistry, 2018, 6, 497. 79 Cao Y C, Liu X K, Dang Q F, et al. Periodical of Ocean University of China, 2024, 54(3), 60(in Chinese). 曹亚婵, 刘晓坤, 党奇峰, 等. 中国海洋大学学报(自然科学版), 2024, 54(3), 60. 80 Zou C Y, Lei X X, Hu J J, et al. Bioactive Materials, 2022, 16, 388. 81 Lei X X, Hu J J, Zou C Y, et al. Bioactive Materials, 2023, 27, 461. 82 Cui C, Liu W. Progress in Polymer Science, 2021, 116, 101388. 83 Zhou H X, Pang X. Chemical Reviews, 2018, 118(4), 1691. 84 Roosen-Runge F, Heck B S, Zhang F, et al. Journal of Physical Chemistry B, 2013, 117(18), 5777. |
|
|
|