INORGANIC MATERIALS AND CERAMIC MATRIX COMPOSITES |
|
|
|
|
|
Propagation Characteristics of Diatom and Its Adhesion Evolution on Concrete Surface in Marine Environment |
RONG Hui1,2, WANG Yanan1, LIU Zhihua1, WANG Hailiang3,*, HUANG Kuoxin 4
|
1 School of Materials Science and Engineering, Tianjin Chengjian University, Tianjin 300384, China 2 Tianjin Key Laboratory of Building Green Functional Materials, Tianjin Chengjian University, Tianjin 300384, China 3 School of Civil Engineering, Tianjin Chengjian University, Tianjin 300384, China 4 China Railway Bridge Engineering Bureau Group Co., Ltd., Tianjin 300300, China |
|
|
Abstract Concrete is seriously corroded by organisms in the marine environment, among which diatom is an important organism in the ocean, which plays the role of primary producer in the ecosystem, and occupies a considerable proportion in the Marine environment. In thiswork, the growth characteristics of diatom and its adhesion evolution on concrete surface were studied. Firstly, the growth and propagation characteristics of diatom were studied, and then the influence of diatom on the performance of concrete at different growth stages was explored by measuring pH value, salinity, total dissolved solid matter and dissolved oxygen in the culture medium, combined with microscopic observation, X-ray diffraction and chloride ion permeability test. The results show that the growth of diatom reaches its peak on the 7th day and then declines gradually. Its life activities will cause the dissolved oxygen value of the culture medium to fluctuate obviously, the pH value increases first and then decreases, the total dissolved solid matter and salinity continue to rise, aggravating the corrosion of concrete. With the extension of test age, the corrosion becomes more and more serious, in which the compressive strength of concrete decreases by 8%, and the mobility of chloride ions increases by 83.3%.
|
Published:
Online: 2025-08-28
|
|
|
|
1 Guo F, Al-Saadi S, Singh Raman R K, et al. Corrosion Science, 2018, 141, 1. 2 Zhao Q, Zhang D X, Zhao X L, et al. Composites Science and Technology, 2021, 215, 108961. 3 Paul G Falkowski, Miriam E Katz, Andrew H Knoll. Science, 2004, 305, 1301. 4 Dugdale T M, Willis A, Wetherbee R. Biophysical Journal, 2006, 90(8), 58. 5 Hughes P, Fairhurst D, Sherrington I, et al. International Biodeterioration & Biodegradation, 2013, 79(2), 14. 6 Hughes P, Fairhurst D, Sherrington I, et al. International Biodeterioration & Biodegradation, 2014, 86, 2. 7 Mehta K, Paul J M. Microstructure, properties and materials of concrete, China Electric Power Press, China, 2008, pp. 45(in Chinese). 库马. 梅塔, 保罗J. M. 混凝土微观结构, 性能和材料, 中国电力出版社, 2008, pp. 45. 8 Wen B L. Study on corrosion and durability of concrete in urban sewage environment. Master's Thesis, Tianjin University, China, 2005(in Chinese). 闻宝联. 城市污水环境下混凝土腐蚀及耐久性研究. 硕士学位论文, 天津大学, 2005. 9 Gaylarde C, Ribas Silva M, Warscheid T. Materials and Structures, 2003, 36(5), 342. 10 Noeiaghaei T, Mukherjee A, Dhami N, et al. Construction & building materials, 2017, 149, 575. 11 Nowicka-Krawczyk P, elazna-Wieczorek J, Koziróg A, et al. Biofouling, 2019, 35(3), 284. 12 Gao Q Q, Cao B, Yang B, et al. Ocean Bulletin, 2017, 36(2), 217(in Chinese). 高清清, 曹兵, 杨波, 等. 海洋通报, 2017, 36(2), 217. 13 Vazquez-Nion D, Silva B, Prieto B. Science of the Total Environment, 2018, 610, 44. 14 Mascaro Maria Emanuela, Pellegrino Giuseppe, Palermo Anna Maria. Sustainability, 2021, 14(1), 1. 15 Duan J Z, Liu C, Liu H L, et al. Marine Sciences, 2019, 44(8), 162(in Chinese). 段继周, 刘超, 刘会莲, 等. 海洋科学, 2020, 44(8), 162. 16 Cavalheiro M, Teixeira M C. Front Med (Lausanne), 2018, 5, 28. 17 Rong H, Yu C L, Zhang S Q, et al. Journal of the Chinese Ceramic Society, 2012, 49(8), 1650(in Chinese). 荣辉, 於成龙, 张树青, 等. 硅酸盐学报, 2021, 49(8), 1650. 18 Gao L X, Ding R X, Yao Y, et al. Materials Reports, 2018, 32(3), 503(in Chinese). 高礼雄, 丁汝茜, 姚燕, 等. 材料导报, 2018, 32(3), 503. 19 Gaylarde C C, Morton L H G. Biofouling (Chur, Switzerland), 1999, 14(1), 59. 20 Jenkins S R, Norton T A, Hawkins S J. Journal of Experimental Marine Biology and Ecology, 1999, 236(1), 49. 21 Du Y F, Xu K D, Lei Y L. Journal of Marine Sciences, 2008(1), 163(in Chinese). 杜永芬, 徐奎栋, 类彦立. 海洋科学集刊, 2008(1), 163. 22 Shi H, Wang L M. Guangdong Agricultural Sciences, 2006(6), 72(in Chinese). 史航, 王鲁民. 广东农业科学, 2006(6), 72. 23 Beata G, Sukriye C A, Vincent B, et al. Frontiers in Microbiology, 2015, 6, 979. 24 Le J X, Yan Y N, Li X Y, et al. Jiangsu Building Materials, 2006(3), 14(in Chinese). 乐建新, 闫亚楠, 李小燕, 等. 江苏建材, 2006(3), 14. 25 Quadri S A, Quadri S A, Sidek O, et al. Neural computing & applications, 2014, 24(7), 1815. 26 Jenneman G E, McInerney M J, Knapp R M. Applied and Environmental Microbiology, 1985, 50(2), 383. 27 Vázquez-Nion D, Silva B, Prieto B. Science of the Total Environment, 2018, 610, 44. 28 Korkanç M, Savran A. Construction and Building Materials, 2015, 80, 279. 29 Onyema I C, Onwuka M E, Olutimehin A O, et al. Life Science Journal, 2010, 7(4), 40. 30 Duan J Z, Ma S D, Huang Y L. Corrosion Science and Protection Technology, 2001(1), 37(in Chinese). 段继周, 马士德, 黄彦良. 腐蚀科学与防护技术, 2001(1), 37. 31 Cohn S A, Farrell J F, Munro J D, et al. Diatom research, 2003, 18(2), 225. 32 Wu G F, Feng Z J, et al. Botany (2nd Ed.) Vol. 2, Higher Education Press, China, 1992, pp. 33(in Chinese). 吴国芳, 冯志坚, 等. 植物学(第二版)下册, 高等教育出版社, 1992, pp. 33. 33 Wang D, Guan F, Feng C, Mathivanan K, et al. Microorganisms, 2023, 11, 2076. 34 Association P C. Concrete Information, 2002, 12, 6. |
|
|
|