POLYMERS AND POLYMER MATRIX COMPOSITES |
|
|
|
|
|
Research Progress on Large Stokes Shift Fluorescent Dyes |
ZHENG Senzhe1,3, DONG Wenkun2,3, CHEN Dong2,3, LING Shisheng2,3, QIAO Xusheng1,3,*, FAN Xianping1,3
|
1 School of Materials Science and Engineering & State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou 310027, China 2 Assure Tech.(Hangzhou) Co., Ltd., Hangzhou 310011, China 3 ZJU-ASSURE Research & Development Center, Hangzhou 310058, China |
|
|
Abstract As an important class of fluorescent materials,fluorescent dyes are widely used to label and stain target in a great variety of fields. However, commercially available fluorescent dyes often exhibit very small Stokes shifts, resulting in their fluorescent signal easily influenced by high background interference and self-absorption. Over the past few decades, abundant fluorescent dyes with large Stokes shifts have been synthesized and various mechanisms to extend the Stokes shift have also been developed and implemented. In this paper, we reviewed four mechanisms to enlarge Stokes shift and three types of large Stokes shift fluorescent dyes based on different frameworks. The sources of large Stokes shift are attributed to the substituent groups and the expanded conjugation system. Finally, the research progress to enlarge Stokes shift is introduced while analyzing the ideas to design molecule and photophysical processes based on different mechanisms with representative fluorescent dyes.
|
Published: 25 July 2025
Online: 2025-07-29
|
|
|
|
1 Ortolani C. Flow cytometry today:everything you need to know about flow cytometry, Springer US, USA, 2022, pp. 1. 2 Mahallawi W H, Khabour O F, Zhang Q, et al. Cytokine, 2018, 104, 8. 3 Schulz D, Zanotelli V R T, Fischer J R, et al. Cell Systems, 2018, 6, 25. 4 Li B, Zhao M, Zhang F. ACS Materials Letters, 2020, 2, 905. 5 Wu X, Zhu W. Chemical Society Reviews, 2015, 44, 4179. 6 Nolan E M, Lippard S J. Chemical Reviews, 2008, 108, 3443. 7 Leng Y, Sun K, Chen X, et al. Chemical Society Reviews, 2015, 44, 5552. 8 Chen F X, Liu Y Y, Bu W B. Journal of the Chinese Society of Rare Earths, 2023, 41(1), 1 (in Chinese). 陈飞翔, 刘艳颜, 步文博. 中国稀土学报, 2023, 41(1), 1. 9 Fulton R J, McDade R L, Smith P L, et al. Clinical Chemistry, 1997, 43, 1749. 10 Lavis L D, Raines R T. ACS Chemical Biology, 2014, 9, 855. 11 Ren T B, Xu W, Zhang W, et al. Journal of the American Chemical Society, 2018, 140, 7716. 12 Goodman J, Brus L E. Journal of the American Chemical Society, 1978, 100, 7472. 13 Weller A. Naturwissenschaften, 1955, 42, 175. 14 Kwon J E, Park S Y. Advanced Materials, 2011, 23, 3615. 15 Jares-Erijman E A, Jovin T M. Nature Biotechnology, 2003, 21, 1387. 16 Sun T K, Min H, Han Z S, et al. Journal of the Chinese Society of Rare Earths, 2023, 41(3), 476 (in Chinese). 孙天凯, 闵辉, 韩宗甦, 等. 中国稀土学报, 2023, 41(3), 476. 17 Fan J, Hu M, Zhan P, et al. Chemical Society Reviews, 2012, 42, 29. 18 Kim S B. Live cell imaging:methods and protocols, Springer US, USA, 2021, pp. 103. 19 Sedgwick A C, Wu L, Han H-H, et al. Chemical Society Reviews, 2018, 47, 8842. 20 Abeywickrama C S. Chemical Communications, 2022, 58, 9855. 21 Lakowicz J R. Principles of fluorescence spectroscopy, Springer US, USA, 2006, pp. 5. 22 Wu W, Yu X, Gao M, et al. Advanced Functional Materials, 2020, 30, 1906707. 23 Cao D, Liu Z, Verwilst P, et al. Chemical Reviews, 2019, 119, 10403. 24 Fan J, Sun W, Hu M, et al. Chemical Communications, 2012, 48, 8117. 25 He L, Dong B, Liu Y, et al. Chemical Society Reviews, 2016, 45, 6449. 26 Chen W, Yue X, Li W, et al. Sensors and Actuators B:Chemical, 2017, 245, 702. 27 Gandioso A, Bresolí-Obach R, Nin-Hill A, et al. The Journal of Organic Chemistry, 2018, 83, 1185. 28 Matikonda S S, Ivanic J, Gomez M, et al. Chemical Science, 2020, 11, 7302. 29 Murata C, Masuda T, Kamochi Y, et al. Chemical & Pharmaceutical Bulletin, 2005, 53, 750. 30 Kim D, Xuan Q P, Moon H, et al. Asian Journal of Organic Chemistry, 2014, 3, 1089. 31 Maruyama J, Ito K. Chemical & Pharmaceutical Bulletin, 1984, 32, 1178. 32 Kim H M, Fang X Z, Yang P R, et al. Tetrahedron Letters, 2007, 48, 2791. 33 Park S, Kim H J. Sensors and Actuators B:Chemical, 2012, 168, 376. 34 Piloto A M, Costa S P G, Gonçalves M S T. Tetrahedron Letters, 2005, 46, 4757. 35 Jiang H, Zhang Q, Li N, et al. Journal of Hazardous Materials, 2024, 467, 133735. 36 Banerjee S, Veale E B, Phelan C M, et al. Chemical Society Reviews, 2013, 42, 1601. 37 Duke R M, Veale E B, Pfeffer F M, et al. Chemical Society Reviews, 2010, 39, 3936. 38 Qiao Q L. Structure-fluorescence relationship of naphthallmide fluorophore and applications in biology. Ph. D. Thesis, Dalian University of Technology, China, 2017 (in Chinese). 乔庆龙. 萘酰亚胺类染料荧光构效关系研究及生物应用. 博士学位论文, 大连理工大学, 2017. 39 Zong L Y. Synthesis and property of molecules based on perylene diimides and naphthalene diimides. Ph. D. Thesis, Wuhan University, China, 2017 (in Chinese). 宗路一. 苝酰亚胺、萘酰亚胺类分子的合成与性能研究. 博士学位论文, 武汉大学, 2017. 40 Chen H, Tang Y, Shang H, et al. Journal of Materials Chemistry B, 2017, 5, 2436. 41 Uesaka T, Ishitani T, Shimeno T, et al. RSC Advances, 2022, 12, 17350. 42 Thavornpradit S, Sirirak J, Wanichacheva N. Journal of Photochemistry and Photobiology A:Chemistry, 2016, 330, 55. 43 Yan F, Fan K, Bai Z, et al. TrAC Trends in Analytical Chemistry, 2017, 97, 15. 44 Kamino S, Uchiyama M. Organic & Biomolecular Chemistry, 2023, 21, 2458. 45 Yang Y, Lowry M, Xu X, et al. Proceedings of the National Academy of Sciences, 2008, 105, 8829. 46 Azuma E, Nakamura N, Kuramochi K, et al. The Journal of Organic Chemistry, 2012, 77, 3492. 47 Wang L, Barth C W, Sibrian-Vazquez M, et al. ACS Omega, 2017, 2, 154. 48 Chen W, Xu S, Day J J, et al. Angewandte Chemie International Edition, 2017, 56, 16611. 49 Padalkar V S, Seki S. Chemical Society Reviews, 2016, 45, 169. 50 Furukawa S, Shono H, Mutai T, et al. ACS Applied Materials & Interfaces, 2014, 6, 16065. 51 Gayathri P, Ravi S, Karthikeyan S, et al. Journal of Molecular Structure, 2023, 1284, 135429. 52 Wu Y Y, Chen Y, Gou G Z, et al. Organic Letters, 2012, 14, 5226. 53 Abeywickrama C S, Li Y, Ramanah A, et al. Sensors and Actuators B:Chemical, 2022, 368, 132199. 54 Zhang X, Xiao Y, Qian X. Organic Letters, 2008, 10, 29. 55 Ong J X, Lim C S Q, Le H V, et al. Angewandte Chemie International Edition, 2019, 131, 170. 56 Lee J, Boo J, Kim Y H, et al. Talanta, 2024, 271, 125715. 57 Ueno Y, Jose J, Loudet A, et al. Journal of the American Chemical Society, 2011, 133, 51. 58 Ong J X, Ang W H. Chemistry-an Asian Journal, 2020, 15, 1449. 59 Piyanuch P, Santatiwongchai J, Impeng S, et al. Journal of Molecular Liquids, 2024, 399, 124363. 60 Zhang Z, Chasteen J L, Smith B D. The Journal of Organic Chemistry, 2024, 89, 3309. 61 Samanta P K, Misra R. Journal of Applied Physics, 2023, 133, 020901. 62 Misra R, Bhattacharyya S P. Intramolecular charge transfer:theory and application, Wiley-VCH, Germany, 2018. pp. 3. 63 Loudet A, Burgess K. Chemical Reviews, 2007, 107, 4891. |
|
|
|