POLYMERS AND POLYMER MATRIX COMPOSITES |
|
|
|
|
|
Flexible Capacitive Pressure Sensor:Polymeric Dielectric Materials, Microstructures and Applications |
ZHANG Huiqi, XU Yu, MIAO Miao, LIU Zichen, LIU Xianzhe*, HUANG Aiping, LUO Jianyi*
|
Research Center of Flexible Sensing Materials and Devices, School of Applied Physics and Materials, Wuyi University, Jiangmen 529020, Guangdong, China |
|
|
Abstract The advent of artificial intelligence (AI) has sparked considerable interest in intelligence within human society. Flexible sensors, a pivotal component of the interconnection between the physical and digital worlds, have undergone a metamorphosis from a single sensing function to sophisticated integrated systems. Flexible capacitive pressure sensors have emerged as a prominent category of flexible pressure sensors due to their high sensitivity, low power consumption, high stability, easy integration, etc., which have significant potential in the fields of human-computer interaction, health monitoring, and so on. Despite the significant progress that has been made in the field of flexible capacitive pressure sensors, the trade-off between the sensitivity and the detection range remains a critical challenge in practical application. In this paper, the latest developments in the exploitation of flexible capacitive pressure sensors are reviewed in terms of sensing mechanism, selection of sensing materials, structural design and their advanced applications. First, based on these sensing mechanisms, the selection of composition materials in flexible capacitive pressure sensors to implement the optimization of sensing performance is emphatically presented. Second, the well-designed structures applied to the composition analysis are also overviewed, such as the surface microstructure, porous structure, and multilayer structure. Finally, the potential application scenarios of flexible capacitive pressure sensors in different pressure detection ranges are summarized and prospected.
|
Published: 25 July 2025
Online: 2025-07-29
|
|
|
|
1 Huang J, Wang H, Li J, et al. ACS Materials Letters, 2022, 4(11), 2261. 2 Li X, Liu Y, Ding Y, et al. ACS Applied Materials & Interfaces, 2024, 16(10), 12974. 3 Zhang Y, Zhou X, Zhang N, et al. Nature Communications, 2024, 15(1), 3048. 4 Li Y, Wei Y, Yang Y, et al. Research, 2022, 2022, 0002. 5 Yu H, Liu Y, Zhou G, et al. ACS Sensors, 2023, 8(11), 4391. 6 Mukherjee T, Gupta D. Communications Engineering, 2023, 2(1), 57. 7 Min S, Kim D H, Joe D J, et al. Advanced Materials, 2023, 35(26), 2301627. 8 Lei H, Chen Y, Gao Z, et al. Journal of Materials Chemistry A, 2021, 9(36), 20100. 9 Song R, Ren P, Liu Y, et al. Advanced Materials Technologies, 2023, 8(14), 2202140. 10 Li Q, Chen D, Miao J, et al. Sensors and Actuators A:Physical, 2024, 366, 114991. 11 Hong S H, Chen T, Wang G, et al. Chemical Engineering Journal, 2023, 471, 144429. 12 Ali M, Hoseyni S M, Das R, et al. Advanced Materials Technologies, 2023, 8(15), 2300347. 13 Yao C, Sun T, Huang S, et al. ACS Nano, 2023, 17(23), 24242. 14 Basarir F, Madani Z, Vapaavuori J. Advanced Materials Interfaces, 2022, 9(31), 2200866. 15 Bao Y, Xu J, Gou R, et al. Progress in Chemistry, 2023, 35(5), 709 (in Chinese). 鲍艳, 许佳琛, 郭茹月, 等. 化学进展, 2023, 35(5), 709. 16 Chen R, Luo T, Wang J, et al. Nature Communications, 2023, 14(1), 6641. 17 Fu X, Zhang J, Kang Y, et al. Nanoscale, 2021, 13(44), 18780. 18 Liu S Y, Lu J G, Shieh H P D. IEEE Sensors Journal, 2018, 18(5), 1870. 19 Zhao S, Ran W, Wang D, et al. ACS Applied Materials & Interfaces, 2020, 12(28), 32023. 20 Qiu J, Guo X, Chu R, et al. ACS Applied Materials & Interfaces, 2019, 11(43), 40716. 21 Zhang D, Wang X, Wu Y, et al. Advanced Materials Technologies, 2021, 6(8), 2100106. 22 Kurup L A, Arthur J N, Yambem S D, et al. ACS Applied Electronic Materials, 2022, 4(8), 3962. 23 Lin X, Xue H, Li F, et al. ACS Applied Materials & Interfaces, 2022, 14(27), 31385. 24 Yu P, Li X, Li H, et al. ACS Applied Materials & Interfaces, 2021, 13(20), 24062. 25 Tay R Y, Li H, Lin J, et al. Advanced Functional Materials, 2020, 30(10), 1909604. 26 Wang Z, Wang S, Zeng J, et al. Small, 2026, 12(28), 3827. 27 Chittibabu S K, Chintagumpala K. Materials Science in Semiconductor Processing, 2022, 151, 106976. 28 Masihi S, Panahi M, Maddipatla D, et al. ACS Sensors, 2021, 6(3), 938. 29 Kwon D, Lee T I, Shim J, et al. ACS Applied Materials & Interfaces, 2016, 8(26), 16922. 30 Shi Y, Lü X, Zhao J, et al. Micromachines, 2022, 13(2), 223. 31 Yu Y, Zheng G, Dai K, et al. Materials Horizons, 2021, 8(3), 1037. 32 Zhao K, Han J, Ma Y, et al. Nanomaterials, 2023, 13(4), 701. 33 Ha K H, Zhang W Y, Jang H, et al. Microsystems & Nanoengineering, 2021, 33(48), 2103320. 34 Gao H, Chen T. Discover Nano, 2023, 18(1), 17. 35 Yu H, Guo H, Wang J, et al. Advanced Science, 2024, 11(6), 2305883. 36 Mannsfeld S C, Tee B C, Stoltenberg R M, et al. Nature Materials, 2010, 9(10), 859. 37 Kwon D, Lee T I, Shim J, et al. ACS Applied Materials & Interfaces, 2016, 8(26), 16922. 38 Shi Y, Lyu X, Zhao J, et al. Micromachines, 2022, 13(2), 223. 39 Niu H, Wei X, Li H, et al. Advanced Science, 2024, 11(3), 2305528. 40 Zhu Y C, Wu Y G, Wang G S, et al. Organic Electronics, 2020, 84, 105759. 41 Cui X H, Chen J W, Wu W, et al. Nano Energy, 2022, 95, 107022. 42 Zhang P, Zhang J, Li Y X, et al. Journal of Physics D:Applied Physics, 2021, 54(46), 465401. 43 Nie L, Zhang L, Di X, et al. Vacuum, 2022, 205, 111423. 44 Ji B, Zhou Q, Hu B, et al. Advanced Materials, 2021, 33, e2100859. 45 Zhao S, Ran W, Wang D, et al. ACS Applied Materials & Interfaces, 2020, 12(28), 32023. 46 刘贤哲, 缪妙, 张会琪, 等. 中国专利, 2024103131037, 2024. 47 Nie L, Zhang L, Di X, et al. Vacuum, 2022, 205, 111423. 48 Pan S Y, Zhang T, Zhang Cheng, et al. Lab on a Chip, 2024, 24, 1668. 49 Su M, Fu J T, Liu Z X, et al. ACS Applied Materials & Interfaces, 2023, 15, 48683. 50 Yuan Y M, Liu B H, Adibeig M R, et al. Advanced Materials, 2024, 36(11), 2310429. 51 Zhang L, Zhang S, Wang C, et al. ACS Sensors, 2021, 6, 2630. 52 Ma Y, Li Z, Tu S, et al. Advanced Functional Materials, 2024, 34(8), 2309792. 53 Zhou Y, Zhu W, Hu F, et al. Materials Research and Application, 2023, 17(2), 323(in Chinese). 周廷亮, 朱伟刚, 胡凤鸣, 等. 材料研究与应用, 2023, 17(2), 323. 54 Ma L, Yu X, Yang Y, et al. Journal of Materiomics, 2020, 6(2), 321. 55 Han R, Liu Y, Mo Y, et al. Advanced Functional Materials, 2023, 33(51), 2305531. 56 Zhang Y J, Gao M, Gao C J, et al. Composites Science and Technology, 2023, 232, 109863. 57 Bae G Y, Han J T, Lee G, et al. Advanced Materials, 2018, 30(43), 1803388. 58 Ji B, Zhou Q, Lei M, et al. Small, 2021, 17(43), 2103312. 59 Kim S W, Oh G Y, Lee K I, et al. Sensors, 2022, 22(19), 7390. 60 Ma Z, Zhang K, Yang S, et al. Composites Science and Technology, 2022, 227, 109595. 61 Li W, Jin X, Zheng Y, et al. NPJ Flexible Electronics, 2019, 3(1). 62 Hwang J, Kim Y, Yang H, et al. Composites Part B:Engineering, 2021, 211, 108607. 63 Niu H, Wei X, Li H, et al. Advanced Science, 2024, 11(3), 2305528. 64 Li L, Zhu G, Wang J, et al. Nano Energy, 2023, 105, 108012. 65 Yang R, Dutta A, Li B, et al. Nature Communications, 2023, 14(1), 2907. 66 Ma Y, Li Z, Tu S, et al. Advanced Functional Materials, 2024, 34(8), 2309792. 67 Zhang P, Zhang J, Li Y X, et al. Journal of Physics D:Applied Physics, 2021, 54(46), 465401. 68 Ma L, Yu X, Yang Y, et al. Journal of Materiomics, 2020, 6(2), 321. 69 Hsieh G W, Chien C Y. Polymers, 2023, 15(18), 3816. 70 Su Q, Zou Q, Li Y, et al. Science Advances, 2021, 7(48), eabi4563. 71 Yu Q, Zhang J. Micromachines, 2022, 14(1), 111. 72 Zhang M, Gu M, Shao L, et al. ACS Applied Materials & Interfaces, 2023, 15, 15884. 73 Yang Y, Dang Z M, Li Q, et al. Advanced Science, 2020, 7(21), 2002131. 74 Tao J, Dong M, Li L, et al. Microsystems & Nanoengineering, 2020, 6(1), 62. 75 Liu W, Xiang F, Mei D, et al. Advanced Materials Technologies, 2024, 9(4), 2301685. 76 Liu Q, Liu Y, Shi J, et al. Nano-Micro Letters, 2022, 14, 1. |
|
|
|